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Abstract

Prior work has successfully incorporated optimization lay-
ers as the last layer in neural networks for various problems,
thereby allowing joint learning and planning in one neural
network forward pass. In this work, we identify a weakness
in such a set-up where inputs to the optimization layer lead to
undefined output of the neural network. Such undefined de-
cision outputs can lead to possible catastrophic outcomes in
critical real time applications. We show that an adversary can
cause such failures by forcing rank deficiency on the matrix
fed to the optimization layer which results in the optimization
failing to produce a solution. We provide a defense for the
failure cases by controlling the condition number of the input
matrix. We study the problem in the settings of synthetic data,
Jigsaw Sudoku, and in speed planning for autonomous driv-
ing. We show that our proposed defense effectively prevents
the framework from failing with undefined output. Finally, we
surface a number of edge cases which lead to serious bugs in
popular optimization solvers which can be abused as well.

Introduction
There is a recent trend of incorporating optimization and
equation solvers as the final layer in a neural network, where
the penultimate layer outputs parameters of the optimization
or the equation set that is to be solved (Amos and Kolter
2017; Donti, Amos, and Kolter 2017; Agrawal et al. 2019;
Wilder, Dilkina, and Tambe 2019; Wang et al. 2019; Per-
rault et al. 2020; Li et al. 2020; Paulus et al. 2021). The
learning and optimizing is performed jointly by differenti-
ating through the optimization layer, which by now is in-
corporated into standard libraries. Novel applications of this
method have appeared for decision focused learning, solv-
ing games, clustering after learning, with deployment in real
world autonomous driving (Xiao et al. 2022) and schedul-
ing (Wang et al. 2022). In this work, we explore a novel
attack vector that is applicable for this setting, but we note
that the core concepts in this attack can be applied to other
settings as well. While a lot of work exists in attacks on ma-
chine learning, in contrast, we focus on a new attack that
forces the decision output to be meaningless via specially
crafted inputs. The failure of the decision system to produce
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meaningful output can lead to catastrophic outcomes in crit-
ical domains such as autonomous driving where decisions
are needed in real time. Also, such inputs when present in
training data lead to abrupt failure of training. Our work ex-
ploits the failure conditions of the optimization layer of the
joint network in order to induce such failure. This vulnera-
bility has not been exploited in prior literature.

First, we present a numerical instability attack. Typically,
an optimization solver or an equation set solver takes in pa-
rameters θ as input. In the joint network, this parameter θ
is output by the learning layers and feeds into the last op-
timization layer (see Fig. 1). At its core, the issue lies in
using functions which are prone to numerical stability is-
sues in its parameters (see appendix). Most optimization or
equation solvers critically depend on the matrix A—part of
the parameter θ—to be sufficiently far from a singular ma-
trix to solve the problem. Our attack proceeds by searching
for input(s) that cause the matrix A to become singular. The
instability produces NaNs—undefined values in floating-
point arithmetic—which may result in undesired behavior
in downstream systems that consume them. We perform this
search via gradient descent and test three different ways of
finding a singular matrix in neighborhood of A; only one of
which works consistently in practice.

Second, to tackle the numerical instability attack, we pro-
pose a novel powerful defense via an efficiently computable
intermediate layer in the neural network. This layer utilizes
the singular value decomposition (SVD) of the matrix A
and, if needed, approximates A closely with a matrix A′ that
has bounded condition number; the bound is a hyperparam-
eter. Large condition number implies closeness to singular-
ity, hence the bounded condition number guarantees numer-
ical stability in the forward pass through the optimization
(or equation) solver. Surprisingly, we find that the training
performance with our defense in place surpasses the perfor-
mance of the undefended model, even in the absence of at-
tack, perhaps due to more stable gradients.

Finally, we show the efficacy of our attack and defense in
(1) a synthetic data problem designed in Amos and Kolter
(2017) and (2) a variant of the Sudoku experiment used
in Amos and Kolter (2017) and (3) an autonomous driving
scenario from Liu, Zhan, and Tomizuka (2017), where fail-
ures can occur even without attacks and how augmenting
with our defense prevent these failures. Lastly, we identify
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Figure 1: Optimization layers in neural networks. The neural network takes input u. Some parameters (Q, p,A, b,G, h) of the
optimization then depend on the output θ = fw(u).

other sources of failure in these optimization layers by in-
voking edge cases in the solver (see appendix). We list seri-
ous bugs in the solvers that we encountered.

Background, Notation, and Related Work
Matrix Concepts and Notation. The identity matrix is de-
noted as I and the matrix dimensions are given by sub-
scripts, e.g., Im×m. The pseudoinverse (Laub 2004) of
any matrix A is denoted by A+; if A is invertible then
A+ = A−1.The condition number (Belsley, Kuh, and
Welsch 1980) of non-singular matrix A is defined as κ(A) =
∥A+∥ ∥A∥ for any matrix norm. We use κ2(A) when the
norm used is 2-operator norm and κF (A) when the norm
used is the Frobenius norm. The (thin) SVD of a matrix A is
given by A = UΣV T where U, V have orthogonal columns
(UTU = I = V TV ) and Σ is a diagonal matrix with non-
negative entries. If A is of dimension m× n, then U,Σ, V T

are of dimension m×r, r×r, r×n respectively. The diago-
nal entries of Σ denoted as σi = Σi,i are the singular values
of the matrix A; singular values are always non-negative.
The condition number directly depends on the largest and
smallest singular value as follows: κ2(A) = σmax/σmin .
Also, ∥A∥2 = σmax. tr(A) denotes the trace of a matrix.
Embedding Optimization in Neural Networks. Embed-
ding a solver (for optimization or a set of equations) is es-
sentially a composition of a standard neural network fw and
the solver s, where w represents weights. The function fw
takes in input u and produces parameters θ for the problem
that the solver s solves. The solver layer takes θ as input
and produces a solution s(θ). The composition s ◦ fw can
be jointly trained by differentiating through the solver s (see
Fig. 1). The main enabler of this technique is efficient dif-
ferentiation of the solver function s. Prior work has shown
how to differentiate through solver s where s is a convex op-
timization problem (Amos and Kolter 2017), linear equation
solver (Etmann, Ke, and Schönlieb 2020), clustering algo-
rithm (Wilder et al. 2019), and game solver (Li et al. 2020).
Such joint networks have been shown to provide better solu-
tion over separate learning and solving (Perrault et al. 2020).

Many applications of optimization layers focus on train-
ing the network end-to-end with the final output repre-
senting some decision of the overall AI system, typically
called decision focused learning (Donti, Amos, and Kolter
2017; Wilder, Dilkina, and Tambe 2019; Wang et al. 2022).
Though this has performed well in certain settings, such net-
works have not been investigated in terms of robustness.
Adversarial Machine Learning. There is a huge body of
work on adversarial learning and robustness that studies vul-
nerabilities of machine learning algorithms, summarized in

many surveys and papers (Goodfellow, Shlens, and Szegedy
2015; Szegedy et al. 2014a; Akhtar and Mian 2018; Biggio
and Roli 2018; He, Li, and Song 2018; Papernot et al. 2018;
Li, Bradshaw, and Sharma 2019; Anil, Lucas, and Grosse
2019; Tramer et al. 2020). Our work is different from prior
work as our attack targets the stability of the optimization
solver that is embedded as a layer in the neural network and
our defense stops the attack by preventing singularity. To the
best of our knowledge, our work is the first work to explore
this aspect.
Robustness against Numerical Stability in Optimization.
Repairing is an approach proposed in recent work (Barratt,
Angeris, and Boyd 2021) to compute the closest solvable op-
timization when the input generic convex optimization is in-
feasible. While possessing the same goal as our defense, this
repairing approach is computationally prohibitive for use in
neural networks as the repairing requires solving tens to hun-
dreds of convex optimization problems just to repair a single
problem instance. Optimization layers are considered slow
even with just one optimization in the forward pass (Amos
and Kolter 2017; Agrawal et al. 2019; Wang et al. 2020),
hence multiple optimizations to repair the core optimization
in every forward pass is not practical for neural networks.
Our defense is computationally cheap due to the targeted
adjustment of specific parameters of the optimization.

Pre-conditioning (Wathen 2015) is a standard approach in
optimization that helps the solver deal with ill-conditioned
matrices better than without pre-conditioning. However,
even with preconditioning, solvers cannot handle specially
crafted singular input matrices. Our defense does not allow
any input that the solver cannot handle.

Methodology
Threat Model: We are given a trained neural network which
is a composition of two functions fw and s, where w repre-
sents neural network weights and w is known to the adver-
sary (i.e., the adversary has whitebox access to the model).
The function fw takes in input u and produces θ = fw(u).
θ defines some of the parameters to our solver (Fig. 1). In
this paper, we analyze a specific component of θ which cor-
responds to the intermediate matrix A (in Ax = b). For ex-
ample, if θ only consists of A, it can be formed by reshaping
θ, where the i, j entry of A is θi,j . The solver layer takes A
as input and produces a solution s(A). The attacker’s goal
is to craft any input u∗ such that s(fw(u∗)) fails to evalu-
ate successfully due to issues in evaluating s stemming from
numerical instability, effectively causing a denial of service.
Note that the existence of any such input u∗ is problematic
and we allow latitude to the attacker to produce any such



(a) Original Images (b) Attack Images

Figure 2: Left shows original image u, right shows u′ = u+
δ which is semantically close. All attacks were found using
AllZeroRowCol with a upper bound on the perturbations.

input as long as syntactical properties are maintained, e.g.,
bounding image pixel values in 0 to 1. In this setting, an
attacker can also craft an attack input that is close to some
original input if needed (Fig. 2), e.g., when they need to foil
a human in the loop defense. Even in this worst case scenario
of allowing the attacker to provide any input, our proposed
defense prevents NaNs in all cases.

We emphasize the distinction between the goal of our at-
tack inputs and that of adversarial examples. In traditional
adversarial examples, small perturbations to the input image
is sought in order to show the surprising effect that two im-
ages that appear the same to the human eye are assigned dif-
ferent class labels, but these misclassified labels can still be
consumed by downstream systems. In contrast, in our work,
the surprise is the existence of inputs that cause a complete
failure in the outcome of the system, which to our knowl-
edge have not been previously studied. Here, we show the
existence of specially crafted inputs, which may be seman-
tically close to a valid input, that evaluate to outputs that
cause a complete denial of service, i.e., NaNs are produced,
leading to undefined behavior in the system. A naive re-
mediation of a default safe action for NaN outputs can fail
in complex domains (e.g., autonomous driving) which have
context-dependent safe actions (e.g., the safest action on a
highway with a speed-limit road sign depends on various
conditions such as speed of the car in front, need to change
lane, etc.). It is thus impossible to provide a rule-based safe
default action since there can be infinitely many contexts.

Numerical Instability Attack
In our attack, we seek to find an input u∗ that evaluates to a
rank deficient intermediate matrix A (Fig. 1). For any m×n
matrix A, A is rank-deficient if its rank is strictly less than
min(m,n). A rank deficient matrix is also singular, hence
the system of equations Ax = b (b ̸= 0) produces undefined
values (NaN) when solved directly or as constraints in an
optimization. Even matrices close enough to singularity can
still produce errors due to the limited precision of comput-
ers. Depending on the neural network fw (Fig. 1), finding
u that produces an arbitrary singular A (e.g., 0m×n) is not
always possible (see appendix). Our approach is guided by
the following known result

Proposition 1 (Demko (1986)). For any matrix A, the
distance to closest singular matrix is minB{∥A−B∥2 :
B is singular} = ∥A∥2 /κ2(A) = σmin

Algorithm 1 Numerical instability attack
Input: input features u, loss function ℓ, victim model fw
Parameters: learning rate α
Output: attack input u∗

Let u∗ = u.
while κ2(fw(u

∗)) ̸= ∞ do
l = ℓ(fw(u

∗)) {ℓ is a technique dependent loss}
Update u∗ based on α, δl

δu∗ , ℓ
end while
return u∗

Thus, increasing the condition number of A moves A
closer to singularity; at singularity κ2(A) is ∞. Following
Alg. 1, we start with a given u producing a well-conditioned
matrix A and aim to obtain u∗ producing singular A′ in
the vicinity of A using three approaches: AllZeroRowCol,
ZeroSingularValue, and ConditionGrad.
AllZeroRowCol: An approach to obtain a rank-deficient ma-
trix A′ from A is to zero out a row (resp. column) in case
m < n (resp. m > n) in A. Then, we use A′ as a target ma-
trix for which a gradient descent-based search is performed
to find an input u∗, that yields A′ = fw(u

∗). In our exper-
iments, we choose the first row/column to zero out, though
choosing other rows/columns is equally effective.
ZeroSingularValue: From Prop. 1, A′ is a closest singular
matrix if ∥A−A′∥2 = σmin. An approach to obtain this
rank-deficient matrix A′ from A is to perform the SVD
A = UΣV T , then zero out the smallest singular value in
Σ to get Σ′, and then construct A′ = UΣ′V T . It follows
from the construction that ∥A−A′∥2 = σmin. Then, using
A′ as a target matrix a gradient descent-based search is per-
formed to find u∗ that yields A′ = fw(u

∗). In theory, since
A′ is a closest singular matrix it should be easier to find by
gradient descent compared to AllZeroRowCol. However, this
approach fails in practice because precision errors make A′

non-singular even though Σ′ has a zero singular value.
ConditionGrad: From Prop. 1, we can also use gradient de-
scent to find u∗ such that the matrix A has a very high con-
dition number. The overall gradient we seek is ∂ log κ2(A)

∂u ,
where we use log as condition numbers can be large. Follow-
ing chain rule, we get ∂ log κ2(A)

∂u = 1
κ2(A)

∂κ2(A)
∂θ

∂θ
∂u . Since

θ = fw(u), the third term is simply the gradient through
the neural network. The second term can be obtained com-
ponent wise in θ as ∂κ2(A)

∂θi,j
for all i, j. The following result

provides a closed form formula for the same (see proof in
appendix).

Lemma 1. Let A ∈ Rm×n with thin SVD A = UΣV T and
σmax = σ1 ≥ . . . ≥ σr = σmin for r = min(m,n). Then,
∂κ2(A)
∂θi,j

is given by tr
(

∂(||A+||2∗||A||2)
∂A · ∂A

∂θi,j

)
where

∂(||A+||2 ∗ ||A||2)
∂A

= BT − (A+CA+)T+

(A+)TA+C(I −A+A) + (I −AA+)CA+(A+)T

with B= ||A+||2V e1e
T
1 U

T, C= ||A||2Uere
T
r V

T and ei is
the unit vector with one in the ith position.



Figure 3: Left is a heatmap of condition numbers for 2D sin-
gular value space (σ1, σ2) of 2× 2 matrices (high condition
number near axes, as one of σ1 or σ2 approaches 0). Right
is an enlarged version of the smaller dashed circle. A recon-
structed A using σ1,σ2 should be singular, but precision
loss makes the singular values of A almost never 0 and they
lie in the white dashed circle.

Algorithm 2 Numerical instability defense
Input: model fw, input features u
Parameter: condition number bound B
Output: well-conditioned A′

Let A′ = A = fw(u) = UΣV T .
if κ2(A) > B then

For all i, let Σ′
i,i = min(σi, σmax/B)

A′ = UΣ′V T

end if
return A′.

ConditionGrad still works less consistently than
AllZeroRowCol. This is mainly because the gradient descent
often saturates at a condition number that is high but not
large enough for instability.

A low-dimension illustration of the approaches is in
Fig. 3, which shows the 2D space of the two singu-
lar values σ1, σ2 of all 2 × 2 matrices. The condition
number (σmax/σmin) is ∞ only on the axes and is dif-
ficult to reach in ConditionGrad. The illustration also
shows why AllZeroRowCol works more consistently than
ZeroSingularValue as recovering a matrix from Σ′ involves
multiplication which leads to loss of singularity (more so in
high dimension) whereas AllZeroRowCol directly obtains a
singular matrix. This is reflected in our experiments later.

We note that simple approaches such as attempting to
use gradient descent or other existing approaches to directly
maximize model output to very high values fails due to sat-
uration (see results in appendix). Further, the optimization
output and ill-conditioning of A can have no relation at all:

Lemma 2. For an optimization min{x|Ax=b} f(x) with f
convex, the solution value (if it exists) can be made arbi-
trarily large by changing θ = {A, b} while keeping A well-
conditioned.

Lemma 2 implies that A can remain well-conditioned
even though output min{x|Ax=b} f(x) is large. Thus, specif-
ically targeting to directly obtain a singular matrix A is im-
portant for a successful NaN attack (proof in appendix).

Defense Against Numerical Instability
First, we note that our goal is to fix the instability in the

optimization used in the final layer, which is distinctly differ-
ent from the general problem of instability of training neu-
ral networks (Colbrook, Antun, and Hansen 2022). Next,
we discuss defense for square matrices A. For symmetric
square matrices, the condition number can be stated in term
of eigenvalues: κ2(A) = |λ|max

|λ|min
where |λ|max is the largest

eigenvalue by magnitude. A typical heuristic to avoid nu-
merical instability for square matrices is to add ηI for some
small η (Haber and Ruthotto 2017). However, this approach
only works for square positive semi-definite (PSD) matrices.
If some eigenvalue of A happens to −η then this heuristic
actually makes the resultant matrix non-invertible (i.e., infi-
nite condition number). Besides, clearly this heuristic does
not apply for non-square matrices.

As a consequence, we propose a differentiable technique
(Alg. 2) that directly guarantees the condition number of
any intermediate matrix to be a bounded by a hyperparam-
eter B. In the forward pass, we perform a SVD of A =
UΣV T ; the computation steps in SVD are differentiable and
the matrix Σ gives the singular values σi’s. Recall that the
condition number κ2 = σmax/σmin. The condition number
can be controlled by clamping the σi’s to a minimum value
σmax/B to obtain a modified Σ′. Then, we recover the ap-
proximate A′ = UΣ′V T . We present the following proposi-
tion (proof in appendix).

Proposition 2. For the approximate A′ obtained from A as
described above and x′ a solution for A′x = b, the follow-
ing hold: (1) ∥A′ −A∥2 ≤ σmax/B and (2) ||x∗−x′||2

||x′||2 ≤
κ2(A)/B for some solution x∗ of Ax = b.

The second item (2) shows that approximation of the so-
lution obtained from the solver depends on κ2(A), which
can be large if κ2(A) is close to infinity. This error estimate
can be provided to downstream systems which can be used
in the decision on whether to use the solver’s output.

Experiments
We showcase our attacks and defenses on three different
domains: (i) synthetic data modelling an assignment prob-
lem, (ii) decision-focused solving of Jigsaw Sudoku puzzles,
and (iii) real world speed profile planning for autonomous
driving. We compare the success rate of the three attack
methods, namely AllZeroRowCol, ZeroSingularValue and
ConditionGrad. We show that the defense is effective by
comparing the condition numbers of the constraint matrix
A during test time. We also show that the attack fails with
the defense for varying values of B: 2, 10, 100, and 200. Fur-
ther, we augment our model with the defense during training
time and show that it effectively prevents NaNs in training
while not sacrificing performance compared to the original
model. We discuss the results in detail at the end in Section .

For all experiments, we used the qpth batched QP solver
as the optimization layer (Amos and Kolter 2017) and Py-
Torch 1.8.1 for SVD. For the synthetic data, we ran the ex-
periments on a cloud instance (16 vCPUs, 104 GB mem-
ory) on CPU. For other settings, we ran the experiments on a
server (Intel(R) Xeon(R) Gold 5218R CPU, 2x Quadro RTX
6000, 128GB RAM) on the GPU.
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that needs to be filled with a value in {1, 2, 3, 4}) and the output is the solution to the puzzle given the constraint that no two
numbers in the same colored region are the same. The solution to the blank cells given by the neural network is indicated in red.

Synthetic Data
The setting used follows prior work (Amos and Kolter 2017)
to test varying constraint matrix sizes used in optimization.
We interpret this prior abstract problem as an assignment
problem under constraints, where inputs are assigned to bins
with constraints that are learnable. The model learns param-
eters in the network to best match the bin assignment in the
data. The input features of input u are generated from the
Gaussian distribution and assigned one out of n bins uni-
formly. Bin assignment is a constrained maximization op-
timization, where only the constraint affects binning; thus,
the objective is arbitrarily set to ∥x∥2 with the constraint
Ax = b, where A, b are learned and x ∈ Rn gives the bin
assignment. Here, A has the size m × n, where m is the
number of equalities and n is the number of bins. A softmax
layer at the end enforces an assignment constraint.
Experimental Setup: For the training of the network, in
each of the randomly seeded training run, we draw 30 in-
put feature vectors u ∈ R500 from the Gaussian distribution
and assign them uniformly to n bins. We do the same for the
test set comprising of 10 test samples. We ran the training
over 1000 epochs using the Adam optimizer (Kingma and
Ba 2015) with a fixed learning rate of 1e−3. For the attack
experiments, we ran each of the attacks for 5000 epochs on
30 input samples drawn from the Gaussian distribution on
each of the 10 models that were trained. An attack is marked
successful if any of the modified inputs produces a NaN. For
the training of the defended models, we varied the hyper-
parameter B. The models are evaluated using cross-entropy
loss against the true bin in which the sample was assigned.
The test loss is averaged over 10 randomly seeded runs.
Results: In this setting where an attacker can arbitrarily
change the input vector at test time, we report the success
rate of each of the attack methods in Table 1 and the loss
results of models trained with the defense in Table 2 for
the non-square matrix A ∈ R40×50 case and square matrix
A ∈ R50×50 case. We see our methods are broadly applica-
ble to all matrices as both the attack and the defense achieve
their goals regardless of the shape of the matrix. Further, test
performance in the baseline ηI defense (with η = 10−8, ap-
plicable only for square matrices) in the A ∈ R50×50 case is
worse than both the original and our proposed defense when
B = 200, with a higher loss at 4.86 ± 1.74 (see appendix).

Jigsaw Sudoku
Sudoku is a constraint satisfaction problem, where the goal
is to find numbers to put into cells on a board (typically
9 × 9) with the constraint that no two numbers in a row,
column, or square are the same. In prior work (Amos and
Kolter 2017), optimization layers were used to learn con-
straints and obtain solutions satisfying those constraints on
a simpler 4× 4 board. We note that in the above setting, the
constraints (A, b) are fixed and do not vary with the input
Sudoku instances and hence, our test time attack does not ap-
ply in this case. Instead, we consider a popular variant of the
4 × 4 Sudoku—Jigsaw Sudoku—where constraints are not
just on the rows and columns, but also on other geometric
shapes made from four contiguous cells. In this setting, the
constraints now vary with input puzzle instances. We repre-
sent each Sudoku puzzle as an image (see Fig. 4) and mark
each constraint on contiguous shapes with a different color.

The network (Fig. 4) has to (i) infer the one-hot encoded
representation of the Sudoku problem p (a 4 × 4 × 4 ten-
sor with a one-hot encoding for known entries and zeros
for unknown entries); (ii) infer the constraints to apply (A, b
in Ax = b); and (iii) solve the optimization task to output
the solution that satisfies the constraints of the puzzle — all
these steps have to be derived just from the image of the Jig-
saw Sudoku puzzle. A small Q = 0.1I ensures strict positive
definiteness and convexity of the quadratic program.
Experimental Setup: We generated 24000 puzzles of the
form shown in Fig. 4 by composing and modifying images in
the MNIST dataset (Lecun et al. 1998) using a modified gen-
erator from (Amos and Kolter 2017) (details in appendix).
We trained the model architecture in Fig. 4 on 20000 Jig-
saw Sudoku images, utilizing Adadelta (Zeiler 2012) with a
learning rate of 1, batch size of 500, training over 20 epochs,
minimizing the MSE loss against the actual solution to the
puzzle. We then test the model on 4000 different held-out
puzzles. We repeat the experiments with 30 random seeds
for each configuration. For the defense, we restrict the condi-
tion number by applying our defense in Section over several
values of the hyperparameter B. For all models, we measure
MSE loss and accuracy which is the percentage of cells with
the correct label in the solution produced by the network. For
all attack methods, we apply a model-tuned learning rate and
optimize for the attack loss for a given image for 500 epochs
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until we generate an image that causes failure. We then re-
peat this for 30 test images.
Results: In this setting, the attack may only modify the input
image, which is constrained as a tensor with pixel values in
the range [0, 1]. Even with these constraints, AllZeroRowCol
consistently finds an input that results in NaNs in the output
(Table 1), showing the effectiveness of our attack. Looking
at the difference in loss (Fig. 7(b)) and condition number of
the matrix A (Fig. 7(c)) for the defended and original unde-
fended network, we see the efficacy of our defense in con-
trolling the condition number and preventing the NaN out-
puts during test time. Finally, plotting the change in training
loss over the epochs for B = 100 and the original model in
Fig. 7(a), we see virtually no difference in epochs to conver-
gence when the defense is applied in training time. We note
the observations above apply for all experimental settings
for all reported values of B, see appendix for details.

Autonomous Vehicle Speed Planning
In autonomous driving, a layered framework with separate
path planning and speed profile generation is often used
due to advantages in computational complexity (Gu et al.
2015). Here, we focus on speed profile generation, where
constrained optimization is employed to maximize comfort
of the passengers while ensuring their safety and adhering to
physical limitations of the vehicle (Ziegler et al. 2014). We
consider the scenario where a traffic sign is observed and the
autonomous vehicle has to make a decision on the accelera-
tion and target speed of the vehicle as shown in Fig. 6.

The autonomous vehicle seeks to make the optimal deci-
sion in speed planning taking into account the constraints
presented. The learning problem involves identifying the

traffic sign and inferring the rules to apply based on the
current aggregate state of the autonomous vehicle collected
from sensors. We provide as input u an image of the traf-
fic sign along with the state of the vehicle, defined as V =
{c, d, f}, where c, d, f ∈ R≥0, where, c is the current speed
of the vehicle (in meters per hour), d is the distance to the
destination (in meters), and f is the distance to the vehi-
cle ahead (in meters). Similar to (Liu, Zhan, and Tomizuka
2017), we aim to minimize discomfort a2 ,where accelera-
tion a ∈ R, and maximize the target speed s ∈ R≥0 us-
ing the quadratic program shown in Fig. 5, where wa, ws ∈
R are tunable weights on the speed and acceleration, and
p ∈ R≥0 is a small penalty term to ensure the problem is a
quadratic program. When input u is fed into the network, θ is
the output of the network right before the optimization layer,
and A(θ) and b(θ) depend on θ. These equalities encode
rules that will apply based on the traffic sign observed, e.g. a
Stop sign would signal to the vehicle to set its target speed s
to 0. We encode physical constraints of the autonomous ve-
hicle (e.g., maximum acceleration, positivity constraints on
speed) in G and h which do not depend on θ.
Experimental Setup: To generate the input, we utilize 5
traffic sign classes of the BelgiumTS dataset (Timofte, Zim-
mermann, and Van Gool 2011) for the images. These traf-
fic signs require an immediate change in speed/acceleration
(e.g. Stop, Yield). We combine the image with the current
state of the vehicle V = {c, d, f} at the decision point and
generate 10000 training samples and 1000 test samples for
use in our holdout set. We enforce the following constraints
through the matrix G, h: all acceleration is at most 14m/s2,
and speed must be positive. We setup the network as in Fig. 5
and employ the Adam optimizer (Kingma and Ba 2015) with
a learning rate of 1e−4, run the experiments for 30 epochs,
and average the result over 30 random seeds. The models
were evaluated using loss functions which penalizes differ-
ent aspects of the decision: Lsafety loss due to impact of colli-
sion with vehicle ahead, Lcomfort loss due to discomfort from
acceleration, Ldistance loss due to slowing down and Lviolation
loss from violating the traffic sign. The Ltotal loss which is
a weighted sum of the above losses is reported (details in
appendix). For the attack, we apply a model-tuned learning
rate and optimize for various attack losses for 500 epochs
over 30 random images from the test set.
Results: Even in this restricted and complex setting where
we only allow the attacker to modify the images and not
the state of the vehicle, the test time attack success rate is
still high for AllZeroRowCol (see Table 1). We note that this
setting is analogous to the real world where attackers can
easily control the environment but not the sensor inputs of



AllZeroRowCol ZeroSingularValue ConditionGrad

Synthetic (m=40, n=50) 100.00 0.67 85.33
Synthetic (m=50, n=50) 98.00 0.00 0.00
Jigsaw Sudoku 100.00 6.67 53.33
Speed Planning 100.00 0.00 0.00
Defense (B=2,10,100,200) 0.00 0.00 0.00

Table 1: Comparison of attack success (% of Successful NaNs) for all methods and datasets. Last row shows defense.

Synthetic Data (CE) Jigsaw Sudoku Speed Planning
m=40, n=50 m=50, n=50 Test Loss Test Acc. Test Loss

Original 24.99 ± 2.03 4.43± 0.93 1.09± 1.03 0.91± 0.20 7928.76 ± 38565
B=2 9.14 ± 0.77 6.41± 0.58 0.93± 0.73 0.94± 0.15 6.64 ± 3.52
B=10 11.67± 1.26 11.53± 0.71 0.82 ± 0.53 0.96 ± 0.09 83.3 ± 404.8
B=100 23.36± 2.08 6.36± 1.50 0.96± 0.87 0.93± 0.16 117.8 ± 443
B=200 23.27 ± 1.75 3.93 ± 0.07 0.99± 0.87 0.93± 0.16 1381.9 ± 6905.5

Table 2: Performance of different models trained with defense in place. The loss is on a held-out validation set. For Synthetic
Data, loss is cross-entropy (CE). For Jigsaw Sudoku, loss is MSE in order of ×10−4. For Speed Planning, loss is Ltotal.
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Figure 7: Effect of attacks and defense in Jigsaw Sudoku

the vehicle or the physical constraints of the car (the attacker
has no control over Gx ≤ h). We report the overall loss Ltotal
when training with defense in Table 2.

Discussion of Results
Efficacy of the attack methods: The simplest
AllZeroRowCol attack was the most effective for all
experiment settings (see Table 1) for a range of activation
functions—ReLU, CeLU, and also tanh (see appendix).
This is surprising, given that the theoretically principled
ZeroSingularValue worked the least consistently empiri-
cally, and even the theoretically motivated ConditionGrad
attack worked inconsistently. This highlights the diffi-
culty of transferring theoretical results to the real world,

especially with limited numerical precision.
Stabilizing effect of defense: All attacks are thwarted by
our defense, showing the effectiveness of controlling the
condition number. We also observe that by tuning the B hy-
perparameter, we are able to train with the defense without
any tradeoffs in terms of learning or accuracy (Table 2), and
across all domains, we find that it adds less overhead (a con-
stant factor less than 2) than the actual optimization. In fact,
at certain values of B, we achieve lower loss and higher ac-
curacy compared to the original undefended model. We con-
jecture that this occurs when the true matrix exists within the
space of the bounded condition number, and the low number
makes the gradients of the optimization layer stable.
On achieving general trustworthiness: Further auditing li-
brary functions, we noted several related issues which can be
abused (some found by us, others by practitioners as benign
flaws). Attackers can exploit these to produce solutions that
violate the constraints of the optimization or even produce
incorrect results when the input is a singular matrix (see ap-
pendix). Careful audits should be performed on the imple-
mentation, down to potential edge cases in the data types.

Conclusion

Our work scratches the surface of a new class of vulnerabil-
ities that underlie neural networks, where rogue inputs trig-
ger edge cases that are not handled in the underlying math or
engineering of the layers, which lead to undefined behavior.
We showed methods of constructing inputs that force sin-
gularity on the input matrix of equality constraints for opti-
mization layers, and proposed a guaranteed defense via con-
trolling the condition number. We hope that our work raises
awareness of this new class of problems so the community
can band together to resolve them with novel solutions.



References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable Convex Optimization
Layers. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
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Appendix for Submission titled “Beyond NaN:
Resiliency of Optimization Layers in The Face

of Infeasibility”1

Bugs and Additional Attacks
BUG: lu solve and Solve Failures for Singular
Matrix
Code: Reproduction code can be found in the folder
attacks/lu solve singular.

Background Some optimization layer libraries (e.g.
qpth) and network architectures (e.g. iUNet (Etmann, Ke,
and Schönlieb 2020)) rely on fast equation solvers like
lu solve to compute the forward pass. However, during
our tests, we found that lu solve gives wildly incorrect
results when a singular matrix is provided. This is a known
issue in PyTorch (see: (NJdevPro 2020)), but this can be re-
produced in TensorFlow as well.

The reproduction scripts can be found in
attack/lu solve singular as part of the sup-
plementary materials. This was tested on CPU and
should give similar results in GPU as well. The ver-
sions of PyTorch used was 1.8.1 and tensorflow 2.5.0.
SingularSolvers.py contains an attack for both
frameworks, while MinimalErrorProof.py contains a
minimal PoC based on the above pytorch issue filed.

Impact If a rogue input is provided or an input just hap-
pens to satisfy the conditions above to the lu solve, it
would result in unpredictable behavior in the output. In a
classification problem, the impact would be a misclassifica-
tion - which could be as serious as a misdiagnosis. If some-
thing more complicated is determined from the neural net-
work (e.g. controlling an autonomous vehicle), the results
can be life threatening.

Remediation There’s currently no consensus on how this
should be resolved, but the expected behavior is to throw an
error that can be caught by the caller.

BUG: Inequality Violation Gives Wrong Result in
qpth
Code: Reproduction code can be found in the folder
attacks/inequality incorrect.

Background qpth is a library that provides a differen-
tiable solver that plugs into pytorch so that a differentiable
quadratic program solver can be included as part of a neural
network. We first note that the quadratic program (in Eq. 1)
allows for arbitrary G, h, including a G and h that is infea-
sible. In this case, no warning is produced and some value is
outputted as We note that we first observed this issue when
observing the output of the Speed Profile Planning scenario,
and we reproduce a minimum proof of concept here.

The reproduction scripts can be found in
attack/inequality incorrect as part of the
supplementary materials. The versions of pytorch used was

1All reproduction code is available at https://github.com/
wongwaituck/attacking-optimization-layers-public

1.8.1. constraint-inequality-marabou-
qpth-adv.ipynb contains the attack
for the default solver in qpth, while
constraint-inequality-marabou-
cvxpy.ipynb contains a minimal proof of concept for
the cxvpy solver - in this case the cxvpy clearly states
that it is infeasible, but the qpth solver gives a completely
incorrect result without any error. For the above notebooks,
the attack sample was generated using the Marabou (Katz
et al. 2019) verification framework.

Impact The incorrect results can be used by downstream
systems (for instance, in our speed profile planning scenario,
the autonomous vehicle) which will lead to potentially disas-
trous outcomes since the output no longer satisfies the con-
straints of the quadratic program.

Remediation Consider implementing an evaluation mode
at test time which checks whether the problem is feasible
and throws an error to the caller at test time instead of failing
silently.

Non-PSD Q
Code: Reproduction code can be found in the folder
attacks/non psd q.

Background Following the formulations detailed in
(Amos and Kolter 2017), we note the optimization problem
that is embedded in the layer is of the following form:

minimize
z

1

2
zTQz + qT z

subject to Az = b, Gz ≤ h
(1)

where z ∈ Rn is our optimization variable Q ∈ Rn×n ⪰ 0
(a positive semidefinite matrix), q ∈ Rn, A ∈ Rm×n,
b ∈ Rm, G ∈ Rp×n and h ∈ Rp are problem data. The
problem is then solved by the method of Lagrange multipli-
ers as shown below

L(z, ν, λ) =
1

2
zTQz+qT z+νT (Az−b)+λT (Gz−h) (2)

The gradient with respect to the parameters of the optimiza-
tion problem are then derived using the standard implicit dif-
ferentiation through the KKT conditions (the full derivation
is available at (Amos and Kolter 2017)). However, the same
paper notes that it performs the following weight updates to
Q.

δℓ

δQ
=

1

2
(dzz

T + zdTz ) (3)

We note that the weight update operation to Q in general
may not respect convexity. For example, we can easily have
positive weighted sums (so the weight updates when applied
to Q will be negated and hence concave) which means con-
vexity of Q is no longer preserved.

Impact This results poor training, where loss starts to fluc-
tuate when the PSD assumption no longer holds, and per-
formance starts to vary wildly. The model is no longer able
to converge correctly, and can be implemented as a train-
ing time attack. The attack proof of concept is available at



attacks/non psd q as part of this supplementary mate-
rials package.

Remediation This attack has been resolved in (Agrawal
et al. 2019), though it was not explicitly mentioned. They do
so by converting it to a second-order conic program. We first
note that the objective function of the quadratic program can
be re-expressed in the following form

minimize
z,k

k

subject to zTPTPx+ qT z ≤ k.
(4)

where PTP = Q. We convert the above constraint to the
following second order conic form∥∥∥∥(1 + qT z − k)/2

Pz

∥∥∥∥
2

≤ (1− qT z + k)/2 (5)

The linear constraints can also be trivially reformulated,
and hence will not shown here. Updates are then applied
with respect to P , which means that convexity is pre-
served across gradient updates (since PTP is always pos-
itive semidefinite).

Inequality Constraint Infeasibility Attack
Code: Reproduction code can be found in
the folder attacks/inequality attack.
ineq feasibility.py trains and runs the at-
tack, loss funcs.py defines the loss function, and
optnet modules.py defines the network. Instructions
on how to run the scripts are in README.md. All results
can be found under data.

Background: We wish to find a u∗ such that the matrix
A formed from θ = fw(u

∗) makes the constraints given by
Ax ≤ b infeasible. For this part, we assume that only A
depends on θ and b is fixed; the attack is actually easier if
b also depends on θ. Farkas’ Lemma is a well known result
that characterizes feasibility of linear inequality constraints
Ax ≤ b, where A ∈ Rm×n and b ∈ Rm. Farkas’ Lemma
states that Ax ≤ b has no solution if and only if ∃ y ∈ Rm

such that y ≥ 0, AT y = 0 and bT y < 0. Thus, finding an A
that makes Ax ≤ b infeasible is equivalent to finding an A
for which ∃ y such that y ≥ 0, AT y = 0 and bT y < 0. We
call the conditions in y as the infeasibility condition.

In order to convert the infeasibility condition to an opti-
mization form, first observe that WLOG bT y < 0 can be
written as bT y = −1. This is WLOG because y can be
scaled by any positive number in the infeasibility condition
and bT y < 0 is a strict inequality. Given this observation,
define two convex set X = {y | AT y = 0, bT y = −1}
and Z = {y | y ≥ 0}. Then, the infeasibility condition is
equivalent to checking that that X ∩ Z is not empty.

The set X comprises of the solutions of the linear equa-

tions Ky =

(
AT

bT

)(
y

)
=

(
0n×1

−1

)
= q. From standard

theory of linear equations, the solutions to this system of
equations is given by:

X = {K+q + (Im×m −K+K)v | v ∈ Rm}

and solutions exist if and only if KK+q = q. To take the
solution existence prerequisite into account, we define the
prerequisite loss

Lprereq =
∥∥KK+q − q

∥∥ (6)

that should be minimized to zero. Next, the easiest way to
ensure that X ∩ Z is not empty is to drive the distance be-
tween the X and Z to zero, where the distance between X,Z
is the Euclidean norm between closest points of X and Z. In
order to achieve this, we define a loss Ldist defined as the
solution value of the following quadratic convex optimiza-
tion:

Ldist = min
y,v∈Rm

∥∥y−K+q−(I−K+K)v
∥∥2
2

(Optdist)

(7)
subject to y ≥ 0

A solution value of zero for Optdist ensures that X ∩ Z is
not empty. This can be seen easily as the constraint forces
feasible y’s to be exactly the set Z and the objective mini-
mizes the distance between any two points in X and Z.

Overall, the attack involves minimizing the loss
γLprereq + (1− γ)Ldist, where γ is a hyper-parameter that
is set closer to one (to ensure that the prerequisite is defi-
nitely zero). The derivative of Ldist can be obtained by dif-
ferentiating through Optdist using optimization layer tech-
niques itself. We obtain the following closed form for re-
quired gradients and another result about Optdist. Before
that, we rewrite the optimization in a standard form using
the variable z = [y −K+q, v] ∈ R2m. Let

B =
(
Im×m (K+K − Im×m)

)
, A = (Im×m 0m×m)

(8)
Then, it can be seen that Bz = y − K+q − (I − K+K)v
and Az = y −K+q and then Optdist can be written as

Ldist = min
z

∥Bz∥22
subject to Az ≥ −K+q

Lemma 3. Matrix BTB has at least one zero eigenvalue,
hence is non-invertible.

Proof of Lemma. From definition of B, we get

BTB =

(
I

(K+K − I)T

)
×
(
I K+K − I

)
=

(
I K+K − I

(K+K − I)T (K+K − I)T (K+K − I)

)
(9)

For any real matrix BTB is always positive semi-definite.

Denoting the above block matrix BTB as
(

A X
XT C

)
, we

apply a property of the Schur’s complement of a block
matrix, which states the following for a symmetric block

matrix Y =

(
A X
XT C

)
: if A−1 exists then det(Y ) =

det(A)det(C−XTA−1X), where det denotes determinant.



We can apply it to the block matrix BTB since A = I , so

det(BTB) = det(I)det((K+K − I)T (K+K − I)−
(K+K − I)T I−1(K+K − I))

= det((K+K − I)T (K+K − I)−
(K+K − I)T (K+K − I))

= 0
(10)

While BTB above is positive semi-definite by construction,
it is only weakly so as one eigenvalue is zero (implied by
zero determinant).

In particular, the non-invertibility of square matrix BTB
in the above result is a concern as the forward pass when
solving Optdist itself fails due to numerical instability. We
avoid this using the numerical stability defense and we de-
scribe this in the next paragraph. Moreover, as the defense
introduces approximation and our attack depends on exact
result, we tighten the constraint of standard form Optdist
to Az ≥ −K+q + ν (equivalent to y ≥ ν in Optdist) for
small ν > 0, which has the effect of shrinking the space Z to
Z ′ ⊂ Z. This ensures that even with approximation the so-
lution found (y in Optdist) is still very likely in the overlap
of X and Z.

Fix for non-invertible BTB: ; Non-invertible BTB =(
A X
XT C

)
in practice results in severe numerical instabil-

ity when trying to solve the optimization problem. To alle-
viate the issue, we add some small perturbation Qη = ηI ,
where η ≥ 0 is a hyperparameter, so that the block matrix
corresponding to C becomes more positive. For simplicity
sake we assume that entries of Qη corresponding to A in the
block matrix are set to 0. We can easily see that this small
addition leads us to a stronger conditions on the above equa-
tion, as follows:

det(BTB +Qη) = det
(
(ηI + (K+K − I)T (K+K − I))

− (K+K − I)T I−1(K+K − I)
)

= det
(
(ηI + (K+K − I)T (K+K − I))

− (K+K − I)T (K+K − I)
)

= det(ηI) = η > 0.

⇒ BTB is positive definite
(11)

Let z∗(x) be the minimizer of the above program for a
given input x. We create a poisoned example x′ from T it-
erations of gradient descent using a learning rate α starting
from a benign input x, by taking the gradient of the loss
function above with respect to the input at the previous iter-
ation as such
xt+1 = xt − α∇xt

(γLprereq(xt) + (1− γ)Ldist(xt))

= xt − α∇xt
(γ
∥∥K(xt)K(xt)

+q − q
∥∥
2

+ (1− γ)(z∗(xt))
⊤B(xt)

⊤B(xt)z
∗(xt))

(12)

where γ is a hyperparameter for the weights on the two
loss functions Lprereq and Ldist.

Impact: We demonstrate the attack, running gradient de-
scent using the loss function defined above, using synthetic
data for G ∈ R2×2 and show that the loss function does in-
deed find inequalities that lead to infeasibility. We plot how
the inequalities change over time while under attack in Fig.
8.

For larger matrices, because we can’t use the default
qpth solver implementation which is faster (it already has
issues with inequality, see Section ), we have to fall back to
the alternative solver. In this case, attacking is much slower.
Further, on large matrices, the forward pass in the alternative
solver may occasionally either already face issues without
being attacked, or face stability issues while being attacked.
We leave further exploration of this as well as remediation
for this issue for future work.

Figure 8: Graph of inequalities as they are attacked. We plot
the inequalities chosen from the last 20 iterations of the at-
tack that show the greatest change, as well as the last itera-
tion which resulted in the infeasibility. Figures should be in-
terpreted left to right, starting from the top row. Highlighted
regions indicate the feasible regions. The last figure on the
bottom right shows that the optimization is no longer feasi-
ble as the inequalities are no longer intersecting, as needed.

Additional Experimental Results
Synthetic Data
Code: Reproduction code can be found in the folder
synthetic data, where eq train all cond.py
trains the model given the parameters, and
eq attack all.py runs all attack methods on a
given model. Instructions on how to run the scripts
are in README.md. All results can be found under
results data. We show relevant plots for training and
attacks in the results below.

Network Description In all the experiments, we have
a network of 2 fully-connected layers of 500 nodes each



with ReLU activations, followed by the OptNet optimization
layer.

Figure 9: Synthetic Data (40x50) – L2 distortion measure as
proposed in (Szegedy et al. 2014b) for attack perturbations,
which is a normalized form of the L2 magnitude of attack

and is defined as
√∑ (xi−x′

i)
2

n , where n is 500 for the Syn-
thetic Data test case.

Figure 10: Synthetic Data (40x50) – Effect of defense on
training averaged over 10 runs. The y-axis follows a log
scale, and we see for large values of B there is virtually no
difference in training compared to the original model.

40x50 Results The overall results in the synthetic data for
40x50 are congruent to our findings in the main paper. In
Fig. 10, we see that the training with the defense can be as
good as the original undefended model with some fine tun-
ing of the parameter B. We see that the most effective attack
on the 40x50 Synthetic Data is AllZeroRowCol in Fig. 11.
Finally, we see that the defense is effective in preventing the
attack, and the condition numbers never exceed our thresh-
old while under attack in Fig. 12.

50x50 Results The overall results in the synthetic data for
50x50 are also congruent to our findings in the main paper.
In Fig. 14, we see that the training with the defense can be
as better as the original undefended model with some fine
tuning of the parameter B. We see that the most effective at-
tack on the 50x50 Synthetic Data is also AllZeroRowCol in
Fig. 15. Finally, we see that the defense is effective in pre-
venting the attack, and the condition numbers never exceed
our threshold while under attack in Fig. 16.

The above models seem to train as well or better when
the defense is applied. Note that the best performing models

Figure 11: Synthetic Data (40x50) – Effect of attack meth-
ods on condition number averaged over 30 samples for the
undefended model. For AllZeroRowCol, condition number
in later epochs take on the last value of condition number if
an attack was found, hence the flat line.

Figure 12: Synthetic Data (40x50) – Effect of attack on con-
dition number averaged over 30 samples for the defended
model, using AllZeroRowCol. We see the defense is highly
effective in controlling the condition number, hence prevent-
ing any attack.

for train loss did not result in the best performing models
for test loss at the end of 1000 iterations - this is likely due
to over-fitting. The two matrices differ in being nonsquare
and square matrix (non-square m = 40 has fewer rows than
m = 50) and the spread of condition numbers of the ran-
domly generated ground truth matrix differs with |n − m|
(see (Chen and Dongarra 2005)), which we believe makes
for different behavior with varying B for the two different
sized matrices (Fig. 10 and 14). The interactions are also
likely complex when the condition number is bounded too
small, e.g., for m = 50, the B = 2 case may benefit from
more stable gradients but the B = 10 case might have nei-
ther stable gradients nor the ability to be close to the true
matrix, and hence performed worse.

Jigsaw Sudoku
Code: Reproduction code can be found in the
folder jigsaw sudoku. train nodef.py and
train defense.py trains the undefended model and
defended model respectively, given the parameters, and
attack num cond fn.py runs all attack methods on
a given model. Instructions on how to run the scripts are
in README.md. We include the script used to create the
dataset in create.py which adapts the MNIST dataset
(Lecun et al. 1998) and tiles them to form a puzzle using
an modified script based on (Amos and Kolter 2017). All



Figure 13: Synthetic Data – Comparison of L2 distortion
measure as proposed in (Szegedy et al. 2014b), which
is a normalized form of the L2 magnitude of attack

and is defined as
√∑ (xi−x′

i)
2

n for attack perturbations,
where n is 500 for the Synthetic Data test case. We omit
ZeroSingularValue and ConditionGrad attack data as there
were not enough attack samples.

Figure 14: Synthetic Data (50x50) – Effect of defense on
training averaged over 10 runs.

results can be found under results data.

Overall Results Graphs are generated from 30 random
seeds. Results found in the main paper (on condition num-
ber, effect on attacks) are not reproduced here. We showcase
the convergence rates of training with the defense and with-
out in Fig. 19.

Speed Profile Planning
Code: Reproduction code can be found under the folder
quadratic speed planning. models.py trains the
undefended model and defended models, given the pa-
rameters, and attack.py runs all attack methods on a
given model. Instructions on how to run the scripts are in
README.md. All results can be found under results. We
include the script used to create the dataset in create.py
which adapts the a subset of the BelgiumTS dataset (Timo-
fte, Zimmermann, and Van Gool 2011) and augments it with
a randomized state of the autonomous vehicle.

Loss Functions Let V = {c, d, f}, where c, d, f ∈ R≥0.
Here, c is the current speed of the vehicle (in meters per
hour), d is the distance to the destination (in meters), and f
is the distance to the vehicle ahead (in meters). Let z be the
class of the traffic sign. The loss functions are defined based

Figure 15: Synthetic Data (50x50) – Effect of attack meth-
ods on condition number averaged over 30 samples on the
undefended model. Again, we see AllZeroRowCol having
the most success in this domain as well.

Figure 16: Synthetic Data (50x50) – Effect of attack meth-
ods on condition number averaged over 30 samples for the
defended model. The input matrix A’s condition number is
kept controlled at a level below the bound B, thus prevent-
ing failures in the model.

on aspects of the decision on acceleration a and target speed
s that we want to minimize, and a weighted sum over the
loss functions Ltotal is used as the final loss.

Lsafety, loss due to impact of collision with vehicle ahead.
We define it as safe (i.e. loss of 0) if our acceleration and
current speed does not cause us to collide with the car ahead
within 2 seconds. As a simplifying assumption. we assume
the car ahead is travelling as the same speed as our car. This
loss is defined as

Lsafety = max(0, 2a− f) (13)
Lcomfort, loss due to discomfort from acceleration is de-

fined similarly as in prior work (Liu, Zhan, and Tomizuka
2017) as some threshold above a maximum comfortable
threshold â, where

Lcomfort = max(0, |a| − â) (14)
In our work, we use the same threshold as in (Liu, Zhan, and
Tomizuka 2017) as 2.5m/s2.
Ldistance loss due to slowing down and taking a longer time

to reach the destination. It is defined as the difference in
time needed to reach the destination given the new target
speed, plus the time needed to accelerate to the new speed.
We avoid dividing by zero by clamping to small values.
Ldistance = −(d/max(c−s,−1))+max(s−c, 1)/max(a, 1)

(15)



Figure 17: Jigsaw Sudoku puzzle dataset. Images generated
by randomly selecting corresponding digits from the MNIST
dataset. The zeroes represent the cell that needs to be filled.

Figure 18: Jigsaw Sudoku – Comparison of L2 distortion
measure as proposed in (Szegedy et al. 2014b), which is
a normalized form of the L2 magnitude of attack and is

defined as
√∑ (xi−x′

i)
2

n for attack perturbations, where
n is 37632 for the Jigsaw Sudoku case. We see that
ZeroSingularValue produces the smallest perturbations (in
terms of magnitude).

Lviolation loss due to traffic violation is when our target
speed exceeds the stipulated speeds in size z. We penalize
any speed exceeding the stipulated limits, as below

Lviolation = max(0, s− lz) (16)

where lz is 0km/h, 0km/h, 10km/h, 20km/h, 50km/h
where z is Stop, No Entry, Pedestrian Crossing,
Yield and Speed Limit respectively.

Results We run the training with the following parameters.
We set wa = 1, p = 0.5, ws = 1000 for all our experiments
.We weigh safety and traffic violations higher as we deem
them more serious, so we use the weights k1 = 100, k2 =
0.1, k3 = 1e−3, k4 = 10 in our experiments. We randomly
generate data such that c ≤ 100000, d ≤ 10000, and f ∈
[0, d].

We initially experimented with ReLU activations, but
found that the undefended model was not able to train in a
stable way in this setting because ReLU often returned 0 as
the gradient during backpropagation leading to higher risk
of divide by zero errors. We combated this with Continu-
ously Differentiable Exponential Linear Units (CeLU) (Bar-
ron 2017) which gave us more stable gradients in training.
We first enumerate the results for both the ReLU and CeLU
activations below.

ReLU Activation Results: We first see that in this set-
ting, the training of the undefended performs better on av-
erage (from train loss plot in Fig. 21 and test loss plot in
Fig. 22). However, this is with an important caveat that we

(a) Train and test accuracy (b) Train and test loss

Figure 19: Effect of defense in the Jigsaw Sudoku setting.
We see that in all the settings, training and test convergence
rates for all defense configurations are similar. For more de-
tails on how the models performed empirically, please refer
to the results in the main paper.

Figure 20: Speed profile planning images. We sample im-
ages from the BelgiumTrafficSign dataset from the follow-
ing classes shown above: Pedestrian Crossing, Speed Limit,
No Entry, Stop, and Yield.

discard unsuccessful runs, only 12.8% of the runs were suc-
cessful (hence we ran over 250 random seeds to achieve the
30 runs needed here) . Further, sufficiently tune values of
B can perform similarly, and the best performing models of
B = 2 performs better than all runs in the original model
(5.01676 vs. 5.01677 in the undefended case).

Figure 21: Speed Profile Planning – Training loss averaged
over 30 runs. Note that while the original performs the best,
these runs only included successful runs of the original train-
ing, which accounts for 12.8% of the total runs. Further, we
did not tune B to the lowest possible value. Note that the best
performing model for B=2 performs slightly better than the
original model.

We also found that in the speed planning setting, the op-
timization layer gave an incorrect output that violated the
constraints 38.6% ± 3.16% of the time (averaged across all
models), despite us explicitly coding in constraints to en-
force a non-negative speed. Any usage of the output would
be disastrous in a critical setting.

We performed attacks using all the attack methods on 30
images. The average and standard deviation are not plotted



Figure 22: Speed Profile Planning – Test loss averaged over
30 runs. Note that while the original performs the best, these
runs only included successful runs of the original training,
which accounts for 12.8% of the total runs. Further, we did
not tune B to the lowest possible value. Note that the best
performing model for B=2 performs slightly better than the
original model.

due to the amount of inf and NaN in the condition numbers
at different epochs for different runs, but we observe from
the data that all methods can result in NaN in the output on
the model that was attacked.

Finally, the defense works as expected, and the condition
numbers are regulated at the value of B, giving us a plot
similar to that in Fig. 16.

Figure 23: Speed Profile Planning – Comparison of L2
distortion measure as proposed in (Szegedy et al. 2014b),
which is a normalized form of the L2 magnitude of at-

tack and is defined as
√∑ (xi−x′

i)
2

n for attack perturbations,
where n is 9411 for the Speed Profile Planning case. We
see that ConditionGrad produces the smallest perturbations,
followed by ZeroSingularValue, then AllZeroRowCol. We
hypothesize that the models are more brittle and therefore
amenable to attacks by ConditionGrad in this case.

CeLU Activation Results: We first see that in this set-
ting, the training of the models with the defense performs
better (from train loss plot in Fig. 24 and test loss plot in
Fig. 25). This supports our claim of the stabilizing effect of
the defense on gradients, leading to healthier and more sta-
ble backpropagation and better performance.

We performed attacks using all the attack methods on 30
images. The average and standard deviation are not plotted
due to the amount of inf and NaN in the condition numbers
at different epochs for different runs, and we plot the L2
distortion of the successful attacks in Fig. 26, which shows
reasonable deviations from the original image.

Figure 24: Speed Profile Planning – Training loss averaged
over 30 runs. Loss is plotted on a log scale. Note that B = 2
performs the best in this case, and the original model per-
forms much more poorly, likely due to how unstable the
training is.

Figure 25: Speed Profile Planning – Test loss averaged over
30 runs. Loss is plotted on a log scale. Note that B = 2 per-
forms the best in this case, and the original model performs
much more poorly due to the high condition number of the
matrix.

Finally, the defense works as expected, and the condition
numbers are regulated at the value of B, giving us a plot
similar to that in Fig. 16.

Other Activation Functions
For completeness, we explore if other loss functions can be
attacked. We first note that the exploration here is not eval-
uated on all the scenarios in our paper, but rather, they are
evaluated on a small toy example to show that the attack is
indeed possible.

Tanh The tanh function is an interesting activa-
tion function (similar to CeLU) which could be used
since it allows for both negative and positive values,
rather than just non-negative values like ReLU. We
explore this function in a restricted setting attacking
a R2×2 matrix, and the exploration can be found in
attacks/tanh exploration/tanh.ipynb, where
we show that we achieve a successful attack in this setting
in Fig 27.

Targeting 0m×n

Large changes to A are frequently restricted by the expres-
sive power of the portion of the network that produces A,
since changes to A depend on perturbations in u. To ex-
plore the feasibility of making arbitrary changes to A, we



Figure 26: Speed Profile Planning – Comparison of L2 dis-
tortion measure as proposed in (Szegedy et al. 2014b), which
is a normalized form of the L2 magnitude of attack and is

defined as
√∑ (xi−x′

i)
2

n for attack perturbations, where n

is 9411 for the Speed Profile Planning case. We see that
AllZeroRowCol reasonable perturbations, even when the at-
tacker’s ability to modify the image is unconstrained.

Figure 27: Condition number in the tanh setting. The left di-
agram shows the effect of ConditionGrad on a tanh activated
neural network, with it successfully finding an attack sam-
ple. We note that while the condition number of the the con-
straint matrix was low in the attack sample, the intermediate
matrix used in qpth was ill-conditioned which resulted in
the NaN. The right diagram shows the defense with B = 2
attacked over 5000 epochs, and in this case the attack was
unsuccessful.

conducted an experiment to explore the trivial attack (set-
ting the target matrix A′ to be the all zero matrix and do-
ing a gradient-descent based search on it) and found that
with the same learning rate and running for 5000 epochs,
AllZeroRowCol manages to find attack inputs while the triv-
ial attack fails to find such any input that results in an all zero
A in the Jigsaw Sudoku setting. The code for the experiment
can be found under the folder attack zero. Instructions
on how to run it are found in README.md.

SVD Implementations
Differing SVD implementations are known to behave differ-
ently based on the condition number and we discuss some of
the ramifications on our results here. We use the PyTorch’s
default SVD implementation which uses gesvdj on the
GPU and gesdd on the CPU, which could potentially vary
in performance especially under large condition numbers.
Empirically, we find that the different SVD implementations
in PyTorch won’t differ too much in the final network per-
formance. For reference, in 10 randomly seeded runs on the
50x50 synthetic data experiment, the test loss was 4.01 ±

0.20 and 4.21 ± 0.52 for gesvdj on the GPU and gesdd
on the CPU respectively for a very high condition number
bound B of 107. The code for the experiment can be found
under the folder svd.

Lipschitz Defense
Lipschitz-constrained networks have been proposed as a
means of defending against adversarial examples, and we
discuss its applicability here. First, a known result is that
the Lipschitz constant of a matrix is the highest singu-
lar value σmax (for 2-norm) and the condition number is
κ2 = σmax/σmin. We can still construct inputs here that
make σmin = 0 and in such cases controlling σmax does not
improve condition number at all. Of course, if σmin is not
exactly zero, controlling σmax can help in lowering the con-
dition number. In contrast, we directly control σmin in our
defense we always produce a well-conditioned A with any
given desired bound on condition number. We ran experi-
ments on the 50x50 synthetic data setting over 10 random
seeds and found that the it did not perform as well as the
setting without the defense (test loss of 14.51 ± 15.66 vs
4.43 ± 0.93), and further AllZeroRowCol managed to find
attack inputs for all models even when σmax is controlled.
The code for the experiment can be found under the folder
lipschitz.

ηI Defense
We discussed in detail the ηI Defense in the main paper, par-
ticularly its lack of general applicability and lack of theoret-
ical guarantees. Further, what prohibited us from using this
as a baseline was that A is often a non-square matrix (this
arises naturally in Jigsaw Sudoku, and we exercised this in
our synthetic dataset as well). However, for the sake of com-
pletion, we provide the result for the 50x50 matrix synthetic
data case, which we will later include in the appendix. We
chose a small η (1e-8, similar to the default penalty term for
stability used in PyTorch) ran the experiment over 10 ran-
dom seeds - we find that the test performance is worse than
the original, with a slightly higher loss at 4.86 ± 1.74 vs 4.43
± 0.93, and is also much higher than the case where B=200
(3.93 ± 0.07).

However, we find that the defense does indeed work as
one would expect and prevents attack inputs, at least empiri-
cally in the square matrix case, but as mentioned in the paper
we don’t have the same worst-case theoretical guarantees as
the SVD defense as well as non-applicability of this baseline
defense for non-square matrices.

The code for the experiment can be found under the folder
etaI.

Constructing Semantically Meaningful Images
We showcase that with some hand tuning of parameters of
the attack, we are able to get semantically meaningful im-
ages for some models, employing an epsilon bound similar
to the highest (0.25) proposed in (Goodfellow, Shlens, and
Szegedy 2015) , as well as via restricting the attack to some
color channels (Fig. 28).

General photorealistic attack images may be possible
with more machinery, using unrestricted colorization/texture



Figure 28: Jigsaw Sudoku images. For the first 3 columns, top row shows original images u, bottom row shows attack images
u′ which satisfy u′ = u + δ, ∥δ∥∞ ≤ 0.2. For the last column, we attack specific colors in Jigsaw Sudoku images. Top shows
original image u; right shows u′ = u + δ, ∥δ∥∞ ≤ 0.32, plus a restriction on only attack the 1st and 3rd color channels. The
attack image looks less grainy in this formulation.We note that images in this setting are represented by a 3× 112× 112 tensor,
with pixel values normalized from [0, 1]. All attacks were found using AllZeroRowCol.

Figure 29: Speed planning attack images. Top row shows
original images u, bottom row shows attack images u′ which
satisfy u′ = u+δ, ∥δ∥∞ ≤ 0.32. We note that images in this
setting are represented by a 3 × 56 × 56 tensor, with pixel
values normalized from [0, 1]. Images may look worse than
they appear due to artifacts from stretching the attack pertur-
bations since input images are of low resolution. All attacks
were found using AllZeroRowCol in the ReLU setting.

transfer techniques as in (Bhattad et al. 2020) and we leave
exploration and implementations of such techniques to fu-
ture work.

The code to create the images can be found under the
folder photorealism.

Results for Maximizing Model Output
We consider the scenario where an attacker aims to produce
a NaN output via maximizing the output of the model. We
apply this to the Jigsaw Sudoku setting as per Section . How-
ever, we modify the goal of the adversary for this scenario.
Here, the goal is to cause an overflow in the parameters so
that output of the optimization layer would be numerically
unstable and result in undefined behavior, leading to NaNs.
We run the attack for 1000 iterations, optimizing to maxi-
mize the output of the model (measured as the absolute sum
of all components of the output of the optimization layer).
We run this attack for 30 different images, and plot the mean
and standard errors.

The results are presented in Figure 30. We first note that
none of the attack produced an image that allowed the model

to output a NaN. This is not feasible for the following rea-
sons: the attack magnitude saturates at around 1700 on all
attack images, thus the postulated overflow never happens.
The condition number is also shown to saturate at around
1000, preventing a successful attack. We further note that it
is possible to increase the model output without increasing
the condition number of A, as proven in Lemma 2 and hence
is not a principled way of attacking the system.

The code for the experiment can be found under the folder
max output.

Proofs Missing in Main Paper and Additional
Theory Results

Lemma (Restatement of Lemma 2). For an optimization
min{x|Ax=b} f(x) with f convex, the solution value (if it ex-
ists) can be made arbitrarily large by changing θ = {A, b}
but keeping A well-conditioned.

Proof. It is always possible to choose A, b such that the un-
constrained minimum x∗ of f(x) does not lie in Ax = b.
This can seen by considering that if Ax∗ = b, then choos-
ing changing b to b− ϵ makes x∗ infeasible. As this restric-
tion does not affect A, let us start by choosing any well-
conditioned, A such that x0 is the minimum with the con-
straint Ax = b. Also, ∇f(x0) ̸= 0 since x0 is not the uncon-
strained minimum. Further, if Ay′ = b and since x0 is the
minimum, by optimality condition of convex functions (with
convex feasible region) we must have ∇f(x0)(y

′ −x0) ≥ 0
for any y′ with Ay′ = b.

Consider the set {z | z = y+k∇f(x0), Ay = b}. This set
can be succinctly specified as Ay = b−kA∇f(x0) = b′. Let
y0 be the new minimum with this set of constraints. Then,
by convexity f(y0) ≥ f(x0) + ∇f(x0)(y0 − x0). Since
y0 = y′ + k∇f(x0) for some given y′ with Ay′ = b, we
have f(y0) ≥ f(x0) + ∇f(x0)(y

′ − x0) + k||∇f(x0)||22.
We know from last paragraph that ∇f(x0)(y

′ − x0) ≥ 0,
thus, by choosing large k we have that the output (minimum
value) of the optimization can be made as large as possible.



Figure 30: Jigsaw Sudoku setting attacked using projected
gradient descent, with the objective function modified to
maximize the output of the optimization layer. We see that
the average magnitude of the target saturates, as does the in-
crease in the condition number.

However, note that the matrix A remains the same for this
new optimization (with constraint Ay = b′), thus, forcing
a large output of the optimization may not lead to an ill-
conditioned matrix.

Lemma (Restatement of Lemma 1). Let A ∈ Rm×n with
thin SVD A = UΣV T and σmax = σ1 ≥ . . . ≥
σr = σmin for r = min(m,n). Then, ∂κ2(A)

∂θi,j
is given by

tr
(

∂(||A+||2∗||A||2)
∂A · ∂A

∂θi,j

)
where:

∂(||A+||2 ∗ ||A||2)
∂A

= BT − (A+CA+)T+

(A+)TA+C(I −A+A) + (I −AA+)CA+(A+)T

with B = ||A+||2V e1e
T
1 U

T, C = ||A||2Uere
T
r V

T and ei is
the unit vector with one in the ith position.

Proof of Lemma 1. We use the differential technique in ma-
trix calculus. We freely use the known result that the trace of

a product of matrices is invariant under cyclic permutations:
tr(ABC) = tr(CAB) = tr(BCA). Let A = UΣV T , and
it is assumed that the σ1 = Σ1,1 is the largest singular value.
There are a total of r = min(m,n) singular values and σr =
Σr,r is the smallest singular value. Then ||A|| = eT1 Σe1,
where ei is a one-hot vector of size r with one in position i.
We first show that tr(d(Σ)) = tr(UT d(A)V ). To see this,
observe that

d(A) = d
(
UΣV T ) = d

(
U)ΣV T +Ud(Σ)V T +UΣd(V T )

Multiplying both sides on left by UT and on right by V and
recalling that UTU = I, V TV = I we get

UT d(A)V = UT d
(
U)Σ + d(Σ) + Σd(V T )V (17)

Also, multiplying by unit vectors we have

eTi U
T d(A)V ei = eTi U

T d
(
U)Σei+eTi d(Σ)ei+eTi Σd(V

T )V ei
(18)

Next, we use the property that d(Y Z) = d(Y )Z +
Y d(Z) and d(Y T ) = d(Y )T to get that d(Y TY ) =
d(Y )TY +Y T d(Y ). Also, note that [d(Y )TY ]T = Y T d(Y )
and tr(Y T + Y ) = 2 tr(Y ), hence tr

(
d(Y TY )

)
=

2 tr(Y T d(Y )). Then, since UTU = I and d(I) = 0, letting
Y = UT d(U) we get Y +Y T = 0. Thus, Y is skew symmet-
ric. It is known that the trace of the product of a symmetric
and skew symmetric matrix is zero. ΣeieTi is a symmetric
matrix. Thus, tr(Y Σeie

T
i ) = tr(eTi U

T d(U)Σei) = 0. Very
similar reasoning gives tr(eTi Σd(V

T )V ei) = 0. Then, us-
ing these and by taking trace of Equation 18 we get

tr(eTi U
T d(A)V ei) = tr(d(eTi Σei))

Next, observe that since ||A|| = tr(eT1 Σe1) and the fact that
the fact that d(tr(AX) = tr(d(X)), we have

d(||A||) = tr(d(eT1 Σe1)) = tr(eT1 U
T d(A)V e1)

= tr(V e1e
T
1 U

T d(A))

The last step above use cyclic permutation within trace.
Next, observe that A+ = V Σ+UT and ||A+|| =
tr(eTr Σ

+er), thus, similar to A we have

d(||A+||) = tr(d(eTr Σ
+er)) = tr(eTr V

T d(A+)Uer)

= tr(Uere
T
r V

T d(A+))

Then,

d(||A|| ∗ ||A+||)
= d
(
||A||) ∗ ||A+||+ ||A|| ∗ d

(
||A+||)

= tr(V e1e
T
1 U

T d(A)) ∗ ||A+||+ ||A|| ∗ tr(Uere
T
r V

T d(A+))

It is known that (Golub and Pereyra 1973):

d(A+) = −A+d(A)A+ + (I −A+A)d(AT )(A+)TA+

+A+(A+)T d(AT )(I −AA+)



Using the shorthand B = ||A+||V e1e
T
1 U

T and C =
||A||Uere

T
r V

T , we continue the equations from above as

d(||A|| ∗ ||A+||)
= tr(Bd(A)) + tr(Cd(A+))

= tr(Bd(A))−tr(CA+d(A)A+) + tr(C(I −A+A)d(AT )(A+)TA+)

+ tr(CA+(A+)T d(AT )(I −AA+))

Using fact that trace is invariant under cyclic permutation
for the last three terms

= tr(Bd(A))−tr(A+CA+d(A)) + tr(d(AT )(A+)TA+C(I −A+A))

+ tr(d(AT )(I −AA+)CA+(A+)T )

Using fact that trace of a transpose Y T is same as trace of Y

for the last two terms and d(AT ) = (d(A))T

= tr(Bd(A))− tr(A+CA+d(A)) + tr((I −A+A)TCT (A+)TA+d(A))

+ tr(A+(A+)TCT (I −AA+)T d(A))

= tr

((
B −A+CA+ + (I −A+A)TCT (A+)TA+

+A+(A+)TCT (I −AA+)T
)
d(A)

)

With this and as the differential is of the form dx =
tr(Zd(Y )), which gives ∂x

∂Y = ZT

∂(||A|| ∗ ||A+||)
∂A

=
(
BT − (A+CA+)T+

(A+)TA+C(I −A+A) + (I −AA+)CA+(A+)T
)

Now, using the fact that ∂g(U)
∂x = tr(∂g(U)

∂U
∂U
∂x ) (U is a

matrix; g(U), x are real numbers), our original derivative
that we needed is

∂(||A+|| ∗ ||A||)
∂θi,j

= tr
(∂(||A+|| ∗ ||A||)

∂A

∂A

∂θi,j

)
which concludes our proof.

Lemma 4 (Lemma 1 variant for κF (A)). ∂κ2(A)
∂θi,j

is given by

tr
(

∂(||A+||∗||A||)
∂A

∂A
∂θi,j

)
where ∂(||A+||∗||A||)

∂A is

||A+||
||A||

∗A+
||A||
||A+||

∗
(
(A+)TA+(A+)T−

(A+)TA+(A+)TA+A−AA+(A+)TA+(A+)T
)

Proof. We use the differential technique. We freely use the
known result that the trace of a product of matrices is invari-
ant under cyclic permutations: tr(ABC) = tr(CAB) =
tr(BCA). Let X denote A+.

d(||A+|| ∗ ||A||)

= ||X|| ∗ d
(√

||A||2
)
+ d
(√

||X||2
)
∗ ||A||

=
||X||
2||A||

∗ d
(
||A||2

)
+ d
(
||X||2

)
∗ ||A||
2||X||

=
||X||
2||A||

∗ d
(
tr(ATA)

)
+ d
(
tr(XTX)

)
∗ ||A||
2||X||

as ||Y ||2 = tr(Y TY )

=
||X||
2||A||

∗ tr
(
d(ATA)

)
+ tr

(
d(XTX)

)
∗ ||A||
2||X||

as d(tr(Y )) = tr(d(Y ))

Next, we use the property that d(Y Z) = d(Y )Z +
Y d(Z) and d(Y T ) = d(Y )T to get that d(Y TY ) =
d(Y )TY +Y T d(Y ). Also, note that [d(Y )TY ]T = Y T d(Y )
and tr(Y T + Y ) = 2 tr(Y ), hence tr

(
d(Y TY )

)
=

2 tr(Y T d(Y )). Using this (with Y as A or X) we get

d(||A+|| ∗ ||A||)

=
||X||
||A||

∗ tr
(
AT d(A)

)
+ tr

(
XT d(X)

)
∗ ||A||
||X||

Since X = A+, from (Golub and Pereyra 1973)

d(A+) = −A+d(A)A+ + (I −A+A)d(AT )(A+)TA++

A+(A+)T d(AT )(I −AA+)



and the trace is invariant under cyclic permutations, we get

d(||A+|| ∗ ||A||)

=
||A+||
||A|| ∗ tr

(
AT d(A)

)
+ tr

(
− (A+)TA+d(A)A+) ∗ ||A||

||A+||

+ tr
(
(A+)T (I −A+A)d(AT )(A+)TA+) ∗ ||A||

||A+||

+ tr
(
(A+)TA+(A+)T d(AT )(I −AA+)

)
∗ ||A||
||A+||

Using fact that trace is invariant under cyclic permutation
for the last three terms

=
||A+||
||A|| ∗ tr

(
AT d(A)

)
+ tr

(
−A+(A+)TA+d(A)

)
∗ ||A||
||A+||

+ tr
(
d(AT )(A+)TA+(A+)T (I −A+A)

)
∗ ||A||
||A+||

+ tr
(
d(AT )(I −AA+)(A+)TA+(A+)T

)
∗ ||A||
||A+||

Using fact that trace of a transpose Y T is same as trace of Y

for the last two terms and d(AT ) = (d(A))T

=
||A+||
||A|| ∗ tr

(
AT d(A)

)
+ tr

(
−A+(A+)TA+d(A)

)
∗ ||A||
||A+||

+ tr
(
(I −A+A)TA+(A+)TA+d(A)

)
∗ ||A||
||A+||

+ tr
(
A+(A+)TA+(I −AA+)T d(A)

)
∗ ||A||
||A+||

= tr

(
||A+||
||A|| ∗

(
AT d(A)

)
+(

−A+(A+)TA+d(A) + (I −A+A)TA+(A+)TA+d(A)

+A+(A+)TA+(I −AA+)T d(A)
)
∗ ||A||
||A+||

)

= tr

(( ||A+||
||A|| ∗AT+

||A||
||A+|| ∗

(
−A+(A+)TA+ + (I −A+A)TA+(A+)TA++

A+(A+)TA+(I −AA+)T
))

d(A)

)

It can be seen that
(

− A+(A+)TA+ + (I −
A+A)TA+(A+)TA+ + A+(A+)TA+(I − AA+)T

)
re-

duces to
(
− AT (A+)TA+(A+)TA+ + A+(A+)TA+ −

A+(A+)TA+(A+)TAT
)

With this and as the differential is of the form dx =
tr(Zd(Y )), which gives ∂x

∂Y = ZT

∂(||A+|| ∗ ||A||)
∂A

=
||A+||
||A||

∗A+
||A||
||A+||

∗
(
(A+)TA+(A+)T−

(A+)TA+(A+)TA+A−AA+(A+)TA+(A+)T
)

Now, using the fact that ∂g(U)
∂x = tr(∂g(U)

∂U
∂U
∂x ) (U is a

matrix; g(U), x are real numbers), our original derivative

that we needed is

∂(||A+|| ∗ ||A||)
∂θi,j

= tr
(∂(||A+|| ∗ ||A||)

∂A

∂A

∂θi,j

)

which concludes our proof.

Proposition (Restatement of Proposition 2). For the ap-
proximate A′ obtained from A as described above and x′ a
solution for A′x = b, the following hold: (1) ∥A′ −A∥2 ≤
σmax/B and (2) ||x∗−x′||2

||x′||2 ≤ κ2(A)/B for some solution
x∗ of Ax = b.

Proof of Proposition 2. Let ϵ = 1/B. As A,A′ have the
same U, V in their respective SVD, A′ − A =

∑
i(σ

′
i −

σi)uiv
T
i where ui, vi are columns of the matrix U, V . The

largest value of σi − σ′
i can be ϵσmax. Thus, from definition

of matrix 2-operator norm and the fact that ∥A∥2 = σmax,
we obtain ∥A′ −A∥2 < ϵσmax.

Next, let A′ = A + ∆A and let the solution obtained
using A′ be x′ and one using A be x∗. (Here by solution
we mean the canonical A+b). According to (Grcar 2010),
a lower bound matrix norm ∥A∥l is defined and by Theo-

rem 5.3 of (Grcar 2010), it can be shown that
∥x∗−x′∥

2

∥x′∥2
≤

∥∆A∥2

∥A∥l
. Further, according to Lemma 2.2 of (Grcar 2010),

we have 1 ≤ ∥A∥l ∥A+∥2. Using this and the fact we al-
ready proved that ∥∆A∥2 < ϵσmax = ϵ ∥A∥2, we get
∥x∗−x′∥

2

∥x′∥2
≤ ϵ ∥A+∥2 ∥A∥2 = ϵκ2(A).


