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Abstract
This work studies Stackelberg network interdiction
games — an important class of games in which
a defender first allocates (randomized) defense re-
sources to a set of critical nodes on a graph while
an adversary chooses its path to attack these nodes
accordingly. We consider a boundedly rational ad-
versary in which the adversary’s response model
is based on a dynamic form of classic logit-based
(quantal response) discrete choice models. The re-
sulting optimization is non-convex and addition-
ally, involves complex terms that sum over expo-
nentially many paths. We tackle these computa-
tional challenges by presenting new efficient algo-
rithms with solution guarantees. First, we present
a near optimal solution method based on path sam-
pling, piece-wise linear approximation and mixed-
integer linear programming (MILP) reformulation.
Second, we explore a dynamic programming based
method, addressing the exponentially-many-path
challenge. We then show that the gradient of the
non-convex objective can also be computed in poly-
nomial time, which allows us to use a gradient-
based method to solve the problem efficiently. Ex-
periments based on instances of different sizes
demonstrate the efficiency of our approaches in
achieving near-optimal solutions.

1 Introduction
Network interdiction is a well-studied topic in Artificial In-
telligence. There are many practical problems [Smith and
Song, 2020], such as in cyber systems, that can be mod-
eled as a network interdiction problem. In literature, many
variations in models of network interdiction exist, and conse-
quentially, a variety of techniques have been used for solv-
ing different types of these problems. Our work focuses
on a particular type in which there is a set of critical nodes
to protect within a larger network. We employ a popular
network interdiction model [Fulkerson and Harding, 1977;
Israeli and Wood, 2002], where the interdictor (defender)

uses a randomized allocation of limited defense resources for
the critical nodes. The adversary traverses the graphs starting
from an origin and reaching a destination. There is an interac-
tion with the defender only if the adversary crosses any criti-
cal node. The interaction is modeled using a leader-follower
(Stackelberg) game where the defender first randomly allo-
cates resources and then the adversary chooses its path ac-
cordingly.

Motivated by the fact that human adversaries in real-world
security domains often act non-optimally [Tambe, 2011], we
model the adversary behavior in our game setting using a dy-
namic Quantal Response model (an instance of well-known
dynamic discrete choice (DDC) models [Rust, 1987; Aguir-
regabiria and Mira, 2010]). While many real world security
applications have benefited from bounded rational Quantal
Response model in single shot game settings [Tambe, 2011;
Yang et al., 2012; Fang et al., 2016; Bose et al., 2022], to the
best of our knowledge, existing works in sequential network
interdiction unrealistically assume perfectly rational adver-
saries and make use of the linearity to utilize linear program-
ming techniques to tackle the problem [Smith et al., 2009;
Smith and Song, 2020]. We are the first to explore the DDC
model of bounded rational adversaries in the network inter-
diction setting and formulate the defender’s problem as a
nonlinear optimization, leading to the requirement of solving
the network interdiction problems via nonlinear optimization
techniques.

While there is a closed form of the DDC adversary choice
probabilities in our game setting, which is mathematically
interesting in itself, the closed form presents computational
challenges as the naive computation of any such probabil-
ity involves reasoning about exponentially many paths from
origin to destination and is a non-convex problem. This
presents challenges beyond those observed in the single shot
setting with quantal responding adversary [Fang et al., 2016;
Mai and Sinha, 2022]. Thus, we address the challenge of
solving such complex non-convex optimization problem for
the defender with two different novel approximation algo-
rithms.

First, we introduce an MILP-based method, named LiSD
(Linearization via Sampling and Discretization). The solu-



tion of LiSD is a bounded approximation for the interdiction
problem. LiSD is the result of an innovative combination
of path-sampling with piece-wise linear approximation (PL)
techniques. Path sampling tackles the computational chal-
lenge of exponentially many paths while PL provides a near-
optimal defender strategy solution with a guaranteed bound.

Second, we propose an efficient Dynamic Programming
method, named DynP. Essentially, DynP provides a compact
and tractable formulations of the defender utility function
and the optimization objective’s gradient even though these
terms involve summing over exponentially many paths. This
is accomplished by exploiting recursive relationships among
adversary utility-related terms across different paths that in-
volves in the defender’s optimal strategy computation. By
employing dynamic programming, we can follow a gradient
descent approach that is computationally efficient at each step
to optimize the defender strategy. Furthermore, while DynP
is computationally efficient, it does not guarantee global op-
timality due to the non-convexity of the defender problem.
We thus identify a special case in which the adversary can
visit only one (any one) critical node and show that the opti-
mization is unimodal in that case, implying that this problem
can be solved optimally in a tractable manner using gradient
descent. We further identify specific conditions under which
the solution to the restricted problem provides approximation
guarantees for the original unrestricted one.

Notation: Boldface characters represent matrices or vec-
tors or sets, and ai denotes the i-th element of a if a is in-
dexable. We use [m], to denote the set {1, . . . ,m}.

2 Related Work

Dynamic discrete choice (DDC) models. From the sem-
inal work of [Rust, 1987], DDC models have been widely
studied and used to analyze sequential looking-forward
choice behaviors and have various applications, e.g., on fer-
tility and child mortality [Wolpin, 1984], on job matching
and occupational choice [Miller, 1984], on bus engine re-
placement [Rust, 1987], and on route choice analysis [Fos-
gerau et al., 2013; Mai et al., 2015]. Among existing DDC
models, the logit-based DDC has been popular due to its
closed-form formulation [Rust, 1987]. This model can be
viewed as a dynamic version of the well-known multino-
mial logit (or Quantal Response) model [McFadden, 1981;
Train, 2003]. In transportation modeling, logit-based DDC
was utilized to develop models to predict people’s bound-
edly rational path-choice behavior [Fosgerau et al., 2013;
Mai et al., 2015]. As highlighted in [Zimmermann and
Frejinger, 2020], such a model presents synergies with the
stochastic shortest path problem [Bertsekas and Tsitsiklis,
1991].

Network interdiction. Our work is a boundedly rational
version of the well-studied shortest path interdiction prob-
lem [Fulkerson and Harding, 1977; Israeli and Wood, 2002].
Existing work only consider perfectly rational adversaries
[Smith et al., 2009; Smith and Song, 2020]. The shortest
path and other network interdiction problems with perfectly
rational adversaries are generally NP-hard and have strong

connections with the areas of bi-level optimization [Dempe et
al., 2015] and robust optimization [Ben-Tal and Nemirovski,
2002]. We refer the readers to [Smith and Song, 2020] for a
comprehensive review. Our work explores the DDC frame-
work to model bounded rational adversaries, resulting in a
significantly more challenging defender problem as it in-
volves complex nonlinear optimization. Besides, there are
other variant models where the problem data is not perfectly
known to players [Cormican et al., 1998], or where the play-
ers repeatedly make their actions [Sefair and Smith, 2016], or
where online learning is involved [Borrero et al., 2016].

Network security games and others. Our work also re-
lates to static Stackelberg security game models with Quantal
Response adversaries [Yang et al., 2011; Yang et al., 2012;
Haghtalab et al., 2016; Mai and Sinha, 2022; Černỳ et al.,
2021; Milec et al., 2020; Bose et al., 2023b]. In dynamic
models named as network security games [Jain et al., 2011],
the set-up is different from our work as in this work the ra-
tional adversary aims to reach a target and stop, whereas in
our work the boundedly rational adversary can attack multi-
ple targets. Other related works along this line only consider
zero-sum network security game setting [Xue et al., 2021;
Xue et al., 2022]. A Quantal Response type relaxation for
network security game was also studied, where the focus in
on smart predict and optimize [Wang et al., 2020], however,
the optimize part is done using standard non-linear solver
such sequential quadratic program with no guarantees.

There are other related game models where players act in
a graph-based environment, including pursuit-evasion and se-
curity patrol games [Zhang et al., 2019; Basilico et al., 2009;
Basilico et al., 2017]. However, these works do not consider
the attacker’s bounded rationality. Additionally, their strat-
egy spaces and problem settings are characterized differently
which involve aspects of real-time information or alarm sig-
nals., etc.

3 Problem Formulation
3.1 Stackelberg Network Interdiction Games
Our network interdiction problem is a leader-follower game
with a single adversary. The game is played on a network
(graph) (S,A) where S is a set of nodes S = {1, 2, . . . , |S|},
and A is a set of arcs. We formulate the problem as a two-
player network interdiction game . The follower (adversary)
takes a path through this network, which is sampled from a
distribution as described below. The origin so ∈ S is a given
starting node. In our problem, we also assume the existence
of a sink (or destination) node sd ∈ S that the adversary ulti-
mately reaches. Let L be the set of critical nodes (i.e., subset
of nodes in the network) that the defender can interfere or al-
ter. From the leader’s (defender’s) viewpoint, the aim is to
assign M resources to nodes s ∈ L; each such assignment is
a defender pure strategy. Further, nodes and resources are of
certain types such that nodes of a given type can only be pro-
tected by resources of that same kind. Let there be K types
of nodes. Let the number of resources of each type k be Mk,
hence

∑
k∈[K] Mk = M . Also, let {Lk}k∈[K] be a partition

of the set of nodes L by the types of the nodes.



A mixed strategy is a randomized allocation resulting
in a coverage vector x = {xs, s ∈ L,

∑
s∈Lk

xs ≤
Mk,∀k ∈ [K]} where xs is the marginal probability of
covering node s, which then impacts the adversary’s path
choice probabilities. Given a node s ∈ S, if the adver-
sary crosses this node, then the defender gets a node-specific
reward rl(s, xs). The Stackelberg equilibrium can be com-
puted by solving the following problem [Yang et al., 2012;
Mai and Sinha, 2022]:

maxx F l(x) =
∑

τ∈Ω
Rl(τ |x)P f (τ |x) (OPT)

subject to
∑

s∈Lk

xs ≤ Mk, ∀k ∈ [K] (1)

xs ∈ [Lx, Ux], ∀s ∈ L,
where Rl(τ |x) =

∑
s∈L∩τ r

l(s, xs) is the defender’s accu-
mulated reward on path τ and P f(τ |x) is the probability the
attacker follows the path τ (of which computation is dis-
cussed in the behavior modeling part). Here, [Lx, Ux] rep-
resent the required lower bound and upper bound on the cov-
erage probability for each node in the critical set L.

3.2 Boundedly Rational Adversary Behavior
We model the adversary’s bounded rational behavior using
the dynamic discrete choice framework (and specifically the
logit-based recursive path choice model [Fosgerau et al.,
2013]). A known property in this setting is that the bounded
rational adversary chooses a policy that is equivalent to a
static multinomial logit (MNL) discrete choice model over
all possible paths [Fosgerau et al., 2013].

Concretely, let U(τ |s0, x)=
∑

s∈τ v(s; x) be the determin-
istic long-term utility of the adversary when starting in s0; if
s0=so, then we simply write U(τ |x). Here, v(s; x) is the ad-
versary’s utility associated with node s when the defender’s
strategy is x. Given x, the probability the adversary follows a
path τ can be computed as follows [Fosgerau et al., 2013]:

P f(τ |x)= e
U(τ;x)/µ

Z
, where Z=

∑
τ∈Ω

e
U(τ;x)/µ , (2)

given Ω is the set of all possible paths and µ is the parame-
ter which governs the follower’s rationality. Thus, we can
view the logit-based dynamic discrete choice formulation as
a soft version of the shortest weighted path problem from the
source so to destination sd. Given the adversary behavior
model, the adversary’s expected utility can be computed as an
expectation over all paths, as follows:

Ef (x) =
∑

τ∈Ω
P f (τ |x)U(τ ; x)

Our Prop. 1 shows that the adversary’s expected utility ap-
proaches the best accumulated utility (smallest path weight)
as µ tends to zero (we drop the fixed strategy x for simplicity).
Proposition 1. Let τ∗= argmaxτ∈ΩU(τ) (i.e., the best path
for the adversary) and L∗ = |U(τ∗)|. Let Ω∗ = {τ ; U(τ) =
L∗} and α=U(τ∗)−maxτ∈Ω\Ω∗ U(τ). We obtain:

|Ef − U(τ∗)| ≤ (L∗ + 1)/(1 + |Ω∗|/|Ω\Ω∗|e
α/µ).

As a result, limµ→0 Ef = U(τ∗).1

1All proofs, if not presented, are included in the appendix.

4 Common Binary Search Framework
Overall, (OPT) is computationally challenging since the ob-
jective not only involves an exponential number of paths in
the network but also is non-convex. To address this compu-
tational challenge, we propose two new different algorithms
which share the common underlying binary search frame-
work. The purpose is to reduce the original fractional (OPT)
to a simpler non-fractional problem. These algorithms then
differ in applying different efficient techniques to solve each
binary search step. We elaborate them in subsequent sections.

Essentially, we write the objective of (OPT) as follows:

F l(x) =
∑

τ∈Ω Rl(τ |x) exp
(
U(τ ;x)/µ

)∑
τ∈Ω exp

(
U(τ ;x)/µ

)
F l(x) has a fractional non-convex form. A typical way
to simplify this structure is to use the Dinkelbach trans-
form and a binary search algorithm [Dinkelbach, 1967] to
convert the original problem into a sequence of simpler
ones. We use binary search to write (OPT) equivalently as:
maxλ

{
λ
∣∣∣ ∃x s.t. F l(x) ≥ λ

}
which is equivalent to finding

a maximum value of λ ∈ R such that the following sub-
problem:

max
x

{∑
τ∈Ω

Rl(τ |x) exp
(U(τ ; x)

µ

)
− λ

∑
τ∈Ω

exp
(U(τ ; x)

µ

)}
(3)

has a non-negative optimal objective value. Overall, (3) is
still non-convex, but no longer fractional. In addition, the
set Ω of all feasible paths can be huge and may not be enu-
merable. Therefore, we propose two different algorithms (as
elaborated next) to tackle these challenges in solving (3).

5 Linearization via Sampling and Discretizing
We describe our first near-optimal method, LiSD, which in-
volves exploring path-sampling with piece-wise linear ap-
proximation (PL) techniques to approximate (3) by a MILP.
Path sampling tackles the computational challenge of expo-
nentially many paths while PL provides a near-optimal de-
fender strategy solution with a guaranteed bound for (3).

5.1 Sample Average Approximation
We first approximate the sum over Ω via sample average ap-
proximation. That is, we select a feasible solution x0 to create
a fixed distribution over paths in Ω. By dividing the objective
of (3) by

∑
τ∈Ω exp(U(τ ;x0)/µ), which is a constant, we aim

to maximize the following objective function:

G(x, λ) = Eτ∼D(x0)
[
Rl(τ |x) exp

(
Ũ(τ |x)

)
−λ exp

(
Ũ(τ |x)

)]
(4)

where Ũ(τ |x) = U(τ ;x)
µ − U(τ ;x0)

µ , and D(x0) is the distribu-
tion over paths τ with probabilities P f (τ |x0) (Eq. 2).

We now can approximate the objective function g(x, λ) by
sample average approximation. Specifically, let τ1, . . . , τN
be N samples from D(x0), we approximate g(x, λ) by:

ĜN (x, λ)= 1

N

∑
n∈[N ]

[
Rl(τn|x)eŨ(τn|x) − λeŨ(τn|x)

]
(5)



Essentially, the approximation ĜN (x, λ) converges to
G(x, λ) almost surely as N → ∞ and the approximation er-
rors can be bounded as shown in Proposition 2.

Proposition 2. For any given ξ > 0, we have:

P
(∣∣ĜN (x, λ)−G(x, λ)

∣∣ ≥ ξ
)
≤ 2 exp

(
−2Nξ2

M2

)
where M = maxτ,x

{
J(τ, x)

}
−minτ,x

{
J(τ, x)

}
J(τ, x) = Rl(τ |x) exp

(
Ũ(τ |x)

)
− exp

(
Ũ(τ |x)

)
Proposition 2 implies that ĜN (x, λ) will converge to the

true function G(x, λ) in probability with an exponential rate
as the number of samples N increases. This is a direct result
from Hoeffding’s inequality [Hoeffding, 1994].

5.2 Piece-wise Linear (PL) Approximation
We now further approximate ĜN (x, λ) by a PL function, al-
lowing the subproblem to be solved to near-optimality via a
MILP solver. First, for each τn, we introduce new variables
un = Rl(τn|x) and vn = Ũ(τn|x)

µ . We now can re-write the

objective function, ĜN (x, λ) accordingly, as follows:

ĜN (x, λ) =
1

N

∑
n∈[N ]

(
un exp(vn)− λ exp(vn)

)
Let Ln and Un be an lower and upper bounds of vn. The
PL approximation can be done by partitioning each interval
[Ln, Un] into K sub-intervals of equal size, and introducing
K binary variables z1n, . . . , z

n
K such that z1n ≥ z2n ≥ ... ≥

zKn , to represent each interval. Intuitively, zkn = 1 implies
the kth sub-interval involves in the approximation of exp(vn)
and zkn = 0, otherwise. Let ∆n = (Un−Ln)/K (i.e., the size
of each interval) and δkn, k ∈ [K] is the slop of function evn

in the interval [Ln +∆n(k − 1), Ln +∆nk]:

δkn =
exp(Ln +∆nk)− exp(Ln +∆n(k − 1))

∆n

Each component exp(vn) can be approximated as follows:

exp(vn) ≈ exp(Ln) + ∆n

∑
k∈[K]

δknz
k
n

We then can re-write the sub-problem (3) as follows:

max
x,z,u,v

1

N

∑
n∈[N ]

(un − λ)
(
exp(Ln) + ∆n

∑
k∈[K]

δknz
k
n

)
(MINLP)

s.t. zkn ≥ zk+1
n ; k ∈ [K − 1], n ∈ [N ] (6)

un = Rl(τn|x) and vn = Ũ(τn|x)/µ (7)

vn = Ln +∆n

∑
k∈[K]

zkn + κn (8)

x ∈ X , zn ∈ {0, 1}K , κn ∈ [0,∆n] (9)

which maximizes the piece-wise approximation of ĜN (x, λ).
The additional variable κn captures the gap between vn and
the binary approximation Ln +∆n

∑
k∈[K] z

k
n.

Finally, there are only some bi-linear terms left to be lin-
earized in the objective function. We do that using Mc-
Cormick inequalities. Specifically, let Lu

n and Uu
n be lower

and upper bounds of un, we introduce new variables skn to
present (un−λ)zkn, we can now linearize the bi-linear term
(un−λ)zkn with the following additional constraints:

skn ≤ (Uu
n − λ)zkn; s

k
n ≥ (Lu

n − λ)zkn (10)

skn ≤ (un − λ)− (Lu
n − λ)(1− zkn) (11)

skn ≥ (un − λ)− (Uu
n − λ)(1− zkn) (12)

The above three constraints guarantee that when zkn = 1, then
skn = un − λ. Conversely, when zkn = 0, then skn = 0.

By combining the above new variable skn and constraints
with (MINLP), we obtain the MILP reformulation:

max
x,z,u,v,s

1

N

∑
n∈[N ]

(
(un − λ)eLn +∆n

∑
k∈[K]

δkns
k
n

)
(MILP)

s.t. Constraints (6–12) are satisfied.

We further establish a performance bound for PL approxima-
tion. We first remark, from the definition of ĜN (x, λ), that:{

ĜN (x, λ) ≥ 0 if λ ≤ minn,x R
l(τn|x) = minn{Lu

n}
ĜN (x, λ) ≤ 0 otherwise.

So, it is sufficient to consider λ ∈ [minn{Lu
n},maxn{Uu

n}].
This allows us to state Proposition 3 below.
Proposition 3. Assume that λ ∈

[
minn{Lu

n},maxn{Uu
n}
]
,

let x̂NK be an optimal solution to (MILP) and x∗ be opti-
mal for average approximation sub-problem maxx Ĝ

N (x, λ),
then we obtain the following inequality:∣∣∣ĜN (x̂NK , λ)− ĜN (x∗, λ)

∣∣∣ ≤ 2BN

K

where B =
(
max
n

{Uu
n}−min

n
{Lu

n}
)
max
n

{
eUn(Un−Ln)

}
.

From an intuitive standpoint, augmenting K would dimin-
ish the approximation error of the PL approximation. Con-
versely, augmenting N has a dual effect: while it lessens the
error arising from path sampling, it simultaneously heightens
the cumulative error stemming from all the samples. In fact,
to drive the bound closer to zero, Proposition 3 indicates that
it’s necessary that the rate of increase for K should surpass
that of N . We further investigate this dual effect by look-
ing at the quality of a solution returned from (MILP) w.r.t the
original sub-problem maxx G(x, λ). A performance bound is
provided in Theorem 1, which implies that, under the condi-
tion N ≤ ξK

6B , the solution given by the PL approximation
will converge in probability to a true optimal solution, with
an exponential rate.
Theorem 1. Assume that λ ∈

[
minn{Lu

n},maxn{Uu
n}
]
.

Let x̂NK be an optimal solution to (MILP) and x∗ be opti-
mal for maxx G(x, λ), then given any ξ > 0, if we choose
N,K such that N

K ≤ ξ
6B , then we have:

P(|G(x̂NK , λ)−G(x∗, λ)| ≥ ξ) ≤ 4e−
2Nξ2

9M2 .



This result can be employed to establish (theoretical) esti-
mates for N and K to achieve a desired performance.
Corollary 1. For any given α, β > 0, β ∈ (0, 1), if we choose

N ≥ ln
(

4
β

)
9M2

2α2 and K ≥ 6NB
α , then

∣∣G(x̂NK , λ) −
G(x∗, λ)

∣∣ ≤ α occurs with probability 1− β.
The above estimates might shed light on how N,K de-

pends on the performance criteria α, β. We note that these
estimates would be conservative, as in practice we may need
much smaller N,K to achieve the desired performance. A
final note is that one can employ an off-the-shelf solver (e.g.
CPLEX or GUROBI) to solve (MILP). Although this pro-
gram would be large in size, SOTA solvers can efficiently
handle very large MILPs, aided by powerful machines.

6 Dynamic Programming Based Solution
The above MILP approximation involves binary variables and
would be intractable in large scenarios. We thus propose
an alternative new algorithm, DynP that also follows binary
search, but at each binary step, (i) it presents a non-trivial
compact representation of the objective function based on the
creation of a dynamic program, which handles an exponential
number of paths; and (ii) it applies a gradient ascent-based
method to efficiently solve the resulting compact problem.

6.1 Compact Representation
We can rearrange terms in the objective of sub-problem (3)
according to critical nodes as follows:

g(x, λ) =
∑

s∈L

∑
τ∈Ω
τ∋s

rl(s, xs) exp
(
U(τ ;x)/µ

)
− λ

[∑
τ ′∈Ω

exp
(
U(τ ′;x)/µ

)]
(13)

Since g(x, λ) is differentiable, this maximization prob-
lem can be solved for a local maximum by a gradient-based
method. One of the key challenges is the computation of
g(x, λ), which, if done naively, would require enumerating
exponentially many paths on Ω. We next show that g(x, λ)
has a compact form, which allows us to compute g(x, λ) and
its gradient efficiently via dynamic programming.

For a compact representation of g(x, λ), we introduce the
following new terms for all nodes s, s′ ∈ S:

Zs =
∑

τ∈Ωsd (s)

exp
(
U(τ ;x)/µ

)
and Y s

s′ =
∑

τ∈Ω(s′,s)

exp
(
U(τ ;x)/µ

)
where Ωsd(s) is the set of all paths from s to the destination
sd and Ω(s′, s) is the set of all paths from s′ to s.

The objective g(x, λ) can be now re-formulated as follows:

g(x, λ) =
∑

s∈L
rl(s, xs)Y

s
soZs − λZso , (14)

where so is the origin. Although these new terms still involve
exponentially many paths in Ωsd(s) and Ω(s′, s), they can be
computed efficiently via dynamic programming.

Indeed, {Zs}s can be computed recursively as follows:

Zs =

{∑
s′∈N(s) exp

(
v(s;x)/µ

)
Zs′ if s ̸= sd

1 if s = sd,

Algorithm 1: Dynamic Programming based algo-
rithm (DynP) to solve Maximizing g(x, λ)

Input: λ ∈ R and an initial value of x
while not converged do

Given x, solve the system H = (I − M)−1B and
JH,j = (I − M)−1JM,jH for all j

Compute g(x, λ) and ∂g(x,λ)
∂xs

using Eq. 14, 15.
Update x using a projected gradient method

end

where N(s) = {s′ ∈ S| (s, s′) ∈ A}, is the set of possible
next nodes that can be reached in one hop from node s ∈ S.

Let M be a matrix of size |S×S| with entries defined as:

Mss′ = exp
(
v(s
∣∣x)/µ) ∀ s ∈ S, s′ ∈ N(s)

Then Z = {Zs, s∈S} is a solution to the linear system Z =
MZ + b, where b is of size |S| × 1 with zero entries except
bsd =1. Similarly, we can compute Ys={Y s

s′}s′ recursively:

Y s
s′ =

{∑
s′′∈N(s′)

(
exp

(
v(s′;x)/µ

))
Ys′′ if s′ ̸= s

1 if s′ = s.

Clearly, Ys is a solution to the linear system Ys = MYs+bs,
where bs is of size |S| with zeros everywhere except bss = 1.

Since Ys and Z are solutions to the systems Ys = MYs +
bs and Z = MZ + b, respectively, ∀s ∈ S, the objective
g(x, λ) can be computed via solving |L|+ 1 system of linear
equations. Finally, we see that all the above linear systems
rely on the common matrix M. We can group them all into
only one linear system. Let H be a matrix of size (|S|) ×
(|L| + 1) in which the 1st to |L|-th columns are vectors Ys,
s ∈ L and the last column is Z. Let B be a matrix of size
(|S|)×(|L|+1) in which the 1st to |L|-th columns are vectors
bs, s ∈ L and the last column is b. We see that H is a solution
to the linear system (I − M)H = B. Thus, in general, we can
solve only one linear system to obtain all Ys and Z. This way
should be scalable when the size of L increases.

6.2 Gradient Computation
We aim at employing the gradient-based approach to solve the
binary search step: maxx {g(x, λ)} (aka. Eq. 3). The core is
to compute the gradient

{
∂g(x,λ)/∂xs

}
. According to Eq. 14,

this gradient computation requires differentiating through the
matrices Z and {Ys} (or equivalently, differentiating through
the matrix H). We first present our Proposition 4:
Proposition 4. (I − M) is invertible in a cycle-free network.

Prop. 4 allows us to compute the matrix H as: H = (I −
M)−1B. By taking the derivatives of both sides w.r.t xj , j ∈
L, we obtain the following: for all j ∈ L,

JH,j = (I − M)−1JM,j(I − M)−1B = (I − M)−1JM,jH,

where JH,j and JM,j are the gradient matrices of H and M
w.r.t xj , i.e., JH,j is a matrix of size |S|×(|L|+1) with entries
JH,j
ss′ = ∂Hss′/∂xj

, and JM,j is a matrix of size (|S| × |S|)



with entries JM,j
ss′ = ∂Mss′/∂xj , for any j ∈ L. Let Rl(x) be

a matrix of size 1 × |L| with entries rl(s, xs) for s ∈ L. We
use AS,T to denotes a sub-matrix of A which uses the rows
in set S and columns in set T . If S or T is a singleton, e.g.,
S = {so} or T = |L|+ 1, then we write it as so or |L|+ 1.

As a result, we now can compute the required gradient as
follows for all s ∈ L where ◦ denotes Hadamard product:

∂g(x, λ)
∂xs

=
(
Rl(x) ◦ JH,s

so,L + JR,s ◦ Hso,L
)
× HL,|L|+1

+ (Rl(x) ◦ Hso,L)× JH,j
L,|L|+1 − λJH

so,|L|+1 (15)

We summarize the main steps to optimize g(x, λ) in Alg. 1.
Remark 1. Alg. 1 only guarantees a local optimum due to
the non-convexity of g(x, λ). The complexity is determined by
the matrix inversion which, in worst case, is in O(|S|3). The
gradient descent loop runs O(1/ϵ) to provide an additive ϵ
approximation. Thus, the total complexity is O

(
(1/ϵ)|S||A|

)
.

In practice, the gradients can be found via auto differentiation
techniques, providing significantly more speed-up.

6.3 A Natural Special Case
Separation of critical resources and/or privileges is an impor-
tant concept in security [Lin et al., 2023]. Following this
principle, we analyze a special yet natural security design
scenario where that the critical nodes L are well separated.
Specifically, we assume that the cost of travelling between
nodes in L is high. More formally, given a critical node
s ∈ L, let ∆+(s) be the set of paths that cross s and at least
another critical node in L. Let β1, β2 > 0 such that:

β1 = max
x

max
s∈L

{∑
τ∈∆+(s) exp

(
U(τ ;x)/µ

)∑
τ∈∆(s) exp

(
U(τ ;x)/µ

) }

β2 = max
x

{∑
τ∈

⋃
s{∆+(s)} exp

(
U(τ ;x)/µ

)∑
τ∈

⋃
s{∆(s)} exp

(
U(τ ;x)/µ

) }, (16)

Intuitively, β1 and β2 are expected to be small if the cost of
traveling between any two critical nodes in L is large. That
is, β1, β2 → 0 as

∑
τ∈Ω(s,s′) exp

(
U(τ ;x)/µ

)
→ 0, where

Ω(s, s′) consists of all paths from s to s′, for any s, s′ ∈ L.
Surprisingly, even though DynP only finds a locally optimal
solution for (OPT) due to its non-convexity, we show that as-
suming small β1 and β2 provides approximation guarantees
for the globally optimal solution value.

For this approximation, we need mild assumptions that
the utilities have a linear form: v(s; x) = wf

sxs + tfs
and rl(s; x) = rl(s, xs) = wl

sxs + tls for some constants
wf

s , t
f
s , w

l
s, t

l
s. We assume that wf

s <0 and wl
s>0, i.e., more

resources xs at s will lower adversary’s utilities, and increase
the defender’s utility. This setting is intuitive for security set-
tings [Yang et al., 2012; Mai and Sinha, 2022].

We first introduce a restricted interdiction problem that can
be solved optimally in a tractable manner using our efficient
gradient descent-based method. We then present an impor-
tant theoretical result showing how the restricted problem’s
solution yields an approximate solution of with the original
problem for well separated critical nodes.

Let ∆(s) be the set of paths that cross a critical node s and
do not cross any other node in L. We consider the following
restricted interdiction problem:

max
x

F̃(x) =
∑

s∈L,τ∈∆(s) r
l(s, xs) exp

(
U(τ ;x)/µ

)∑
s∈L,τ∈∆(s) exp

(
U(τ ;x)/µ

)
(Approx-OPT)

s.t.
∑

s∈Lk

xs ≤ Mk, ∀k∈ [K]

xs ∈ [Lx, Ux], ∀s ∈ L.

Intuitively, in this restricted problem (Approx-OPT), the ad-
versary’s path choices are restricted to a subspace of paths in
the network which only cross a single critical node in L. We
denote by X , the feasible set of the defender’s interdiction
strategies x that satisfy the constraints in (Approx-OPT).

Solution Relation with Original Problem (OPT)
We now theoretically analyze (Approx-OPT)’s solution in re-
lation to our original problem (OPT). We prove that:
Theorem 2. Let x∗ be an approx. solution to (Approx-OPT):
maxx∈X F̃(x) such that F̃(x∗) ≥ (1 − ϵ)maxx F̃(x) for
given ϵ > 0, let κ = maxx∈X

∑
s∈L |rl(s, xs)| be the max-

imal absolute reward that the defender can possibly achieve
at a critical node, then we obtain:

F l(x∗) ≥
(1− ϵ)maxx

{
F l(x)

}
(1 + β1)(1 + β2)

− κ
ϵ+ β1 + β2 + β1β2

(1 + β1)(1 + β2)
.

Additionally, if x∗ is an approx. solution with an additive
error ϵ > 0, we obtain the following bound:

F l(x∗) ≥
(
1/η
)
maxx{F l(x)} − κ

(
(η−1)/η

)
,

where η = (1 + β1)(1 + β2)
(
1 + ϵ

κ+minx∈X F̃(x)

)
.

Note that maxx∈X {F l(x)} is the original problem (OPT)
to find an optimal defender strategy. As stated previously,
when the cost of traveling between any two critical nodes is
high, (β1, β2) is close to zero, meaning the RHS of both in-
equalities in Theorem 2 will closely approximate the optimal
solution value of (OPT).

Solving the Restricted Problem: To solve the restricted
problem, we also apply binary search. It can be demonstrated
that each sub-problem of the binary search can be effectively
solved to optimality (or near-optimality) using a gradient-
based method. Due to limited space, the details of this ap-
proach is provided in the appendix along with the sub-results
that lead to the main Theorem 2.

7 Numerical Experiments
To illustrate the efficacy of our proposed algorithms, we per-
form experiments on synthetic data.

7.1 Experimental Settings
Data generation. We generate random graphs (cycle-free)
with |S| vertices and edge probability p. We randomly choose
|L| vertices (except source and destination) as the critical
nodes that can be attacked. We set |L| = 0.8 × |S|. In



addition, the defender weights
{
(wl

j , t
l
j)
∣∣ j ∈

[
|L|
]}

are
generated uniformly at random from the interval [0, 1] and
the adversary weights

{
(wf

j , t
f
j )
∣∣ j ∈

[
|S|
]}

are gener-
ated at random from the interval [−1, 0]. Moreover, we used
p = 0.8, µ = 2.

Baseline. We approximate the sums over exponentially
many paths in Equation 3 by sampling paths from the net-
work and run gradient descent on this expression to estimate
the optimal decision variable. To sample paths for the base-
line, a resource allocation x is assigned to L and the follower
is initially placed at the origin so. Its next node s1 is sampled
from the distribution

πf (s|s0, x) =
exp

(
v(s;x)/µ

)
Zs∑

s′∈N(s0)
exp

(
v(s′;x)/µ

)
Zs′

,

where s ∈ {nodes having an edge to s0} and N(s0) is the
set of outgoing nodes from s0. Similarly s2, . . . etc. are sam-
pled till the destination sd is reached. This sampling is re-
peated 1000 times per iteration and then average is taken to
get the objective. Based on the gradients, the resource allo-
cation x is updated which changes the transition probabilities
and the process is repeated again until convergence. Ten dif-
ferent values of x were taken and the seed with the lowest
loss was reported. We will compare this baseline against our
near optimal MILP-based algorithm, LiSD and our dynamic
programming based algorithm, DynP. To ensure fairness, all
algorithms were run with the same number of epochs.

Choosing N and K for the LiSD To justify our choices of
N and K for the LiSP described, we first fix N = 90 and vary
K from 5 to 100. For each value of K, we generate 10 inde-
pendent instances and solve them using the MILP approach.
We then observe that the optimal values given by K = 20
are only 0.3% different from those given by the largest value
of K (i.e., K = 100). Moreover, the optimal values given
by N = 90 are only about 3% different from those from the
largest value of N , i.e., N = 150. The numerical details can
be found in the appendix. We therefore choose N = 90 and
K=20 for the LiSD approach. According to the above anal-
yses, these choices would suffice to guarantee low practical
approximation errors stemming from both path-sampling and
PL approximation. We use GUROBI (a SOTA MILP solver)
to solve (MILP). All our experiments were run on a 2.1 GHz
CPU with 128GB RAM.

7.2 Numerical Comparison
We vary the number of nodes from 20 to 100. For each choice
of number of nodes, we generate 20 independent instances
and solve them by the three methods (Baseline, DynP, and
LiSD). The rates of giving best objective values (over 20
instances) are reported in Table 1. LiSD consistently out-
performs the other methods, by a large margin, in terms
of the number of times it returns the best objective values.
DynP performs better than Baseline for large-size settings,
but worse than Baseline for small-size ones. Note that, among
the four methods, only LiSD can guarantee near-optimal so-
lutions. The computing times are not directly comparable, as
GUROBI ran on several cores while the other gradient-based

# nodes Baseline (Ours) LiSD (Ours) DynP
20 30% 50% 0%
40 20% 65% 15%
60 15% 55% 30%
80 20% 45% 35%

100 15% 45% 15%

Table 1: Rates of giving best objective values. Each measurement is
computed using 20 independent instances.

# nodes Baseline (Ours) LiSD (Ours) DynP
20 253.1% 344.2% 301.9%
40 54.5% 63.2% 55.9%
60 51.7% 57.6% 55.8%
80 25.3% 34.7% 30.4%

100 88.2% 93.0% 89.0%

Table 2: Average percentage improvements w.r.t the lowest objective
values given by the four methods.

methods use only one CPU core. We however observe that,
for instances of 100 nodes, the average computing times for
the Baseline, DynP, and LiSD are approximately 3, 15 and
1.8 minutes.

We further compare the objective values returned by the
four methods by computing the percentage improvement of
each objective w.r.t. the lowest objective value given by the
four approaches. Specifically, we solve each instance to ob-
tain 4 objective values. We then compute the percentage
improvement of each objective value w.r.t the lowest value
among the four values. The average percentage values are re-
ported in Table 2 below, which show that LiSD performs the
best, and DynP outperforms the Baseline.

8 Conclusion
Network interdiction game problems present a set of chal-
lenges that appear intractable to start with. In this work, we
address some of these challenges by providing novel meth-
ods that efficiently solve a class of network interdiction prob-
lems with approximation guarantees. We are the first to study
the dynamic Quantal Response model in the type of net-
work interdiction studied in [Fulkerson and Harding, 1977;
Israeli and Wood, 2002]. We believe this modeling and
methodology contribution provides suggestions for other fu-
ture research directions, such as a variant where the adver-
sary’s objective is to maximize a flow through the network
or a setting where the leader would also need to make dy-
namic and time-dependent decisions. This online nature of
the problem suggests possible future work in online learning
problems such as [Bose et al., 2023a]. It is interesting to anal-
yse scenarios where network structures arise naturally such
as ride pool matching [Bose and Varakantham, 2021] and are
under threat from adversaries such as competing providers.
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9 Missing Proofs
9.1 Proof of Proposition 1.
Proof. We re-write the adversary’s expected utility as follows:

Ef =
∑
τ∈Ω

U(τ)
exp

(
U(τ)
µ

)
∑

τ ′ exp
(

U(τ ′)
µ

)
=
∑
τ∈Ω∗

U(τ)
exp

(
U(τ)
µ

)
∑

τ ′∈Ω∗
exp

(
U(τ ′)

µ

)
+

∑
τ ′∈Ω\Ω∗

exp
(

U(τ ′)
µ

)

+
∑

τ∈Ω\Ω∗

U(τ)
exp

(
U(τ)
µ

)
∑

τ ′∈Ω∗
exp

(
U(τ ′)

µ

)
+

∑
τ ′∈Ω\Ω∗

exp
(

U(τ ′)
µ

)

=
U(τ∗)|Ω∗|

|Ω∗|+
∑

τ ′∈Ω\Ω∗
exp

(
U(τ ′)−U(τ∗)

µ

) +
∑

τ∈Ω\Ω∗

U(τ) exp
(

U(τ)−U(τ∗)
µ

)
|Ω∗|+

∑
τ ′∈Ω\Ω∗

exp
(

U(τ ′)−U(τ∗)
µ

) (17)

Let us denote T =
∑

τ ′∈Ω\Ω∗ exp
(

U(τ ′)−U(τ∗)
µ

)
for notational simplicity. We see that:

0 ≤ T ≤ |Ω\Ω∗| exp
(
−α

µ

)
(18)

From (17), we have:

|Ef − U(τ∗)| ≤ T
|Ω∗|+ T

+

∣∣∣∣∣∣
∑

τ∈Ω\Ω∗

U(τ) exp
(

U(τ)−U(τ∗)
µ

)
|Ω∗|+ T

∣∣∣∣∣∣
≤ T

|Ω∗|+ T
+ L∗

∣∣∣∣ T
|Ω∗|+ T

∣∣∣∣
= (L∗ + 1)

1

1 + |Ω∗|
T

(i)

≤ L∗ + 1

1 + |Ω∗|
|Ω\Ω∗| exp

(
α
µ

) ,
where (i) is due to (18). We obtain the desired inequality. The limit limµ→0 Ef = U(τ∗) is just a direct result of this inequality,
concluding our proof.

9.2 Proof of Proposition 3
Proof. Let ĜNK(x) be the objective of (MINLP) as a function of x (x is fixed in the optimization problem). Since we approx-
imate function exp(vn) by a piece-wise linear function exp(vn) ≈ T̂ (zn) = exp(Ln) + ∆n

∑
k∈[K] δ

k
nz

k
n, according to the

mean value theorem, the approximation error between exp(vn) and its approximation can be bounded as

| exp(vn)− T̂ (zn)| ≤ max
v∈[Ln,Un]

{exp(v)∆n} ≤ exp(Un)
Un − Ln

K

This implies that, for any x we can bound the gap |ĜNK(x)− ĜK(x)| as

|ĜNK(x)− ĜK(x)| ≤
∑
n

max{(un − λ)} exp(Un)
Un − Ln

K

≤
∑
n

(max
n

{Uu
n} −min

n
{Uu

n}) exp(Un)
Un − Ln

K
≤ NB

K
(19)

Now, let x̂NK be optimal for maxx{ĜNK(x)} and x∗ is optimal for maxx{ĜN (x)}. We have the following chain

|ĜN (x∗)− ĜN (x̂NK
)| ≤ |ĜN (x∗)− ĜNK(x̂NK

)|+ |ĜNK(x̂NK
)− ĜN (x̂NK

)|
(a)

≤ NB

K
+ |ĜN (x∗)− ĜNK(x̂NK

)| (20)

where (a) is due to (19). We now consider two cases:



(i) If ĜN (x∗) ≥ ĜNK(x̂NK
), then

|ĜN (x∗)− ĜNK(x̂NK
)| = ĜN (x∗)− ĜNK(x̂NK

)

≤ ĜN (x∗)− ĜNK(x∗) ≤ NB

K

(ii) If ĜN (x∗) ≤ ĜNK(x̂NK
), then

|ĜN (x∗)− ĜNK(x̂NK
)| = −ĜN (x∗) + ĜNK(x̂NK

)

≤ −ĜN (x̂NK
)− ĜNK(x̂NK

) ≤ NB

K

Combine the two cases we get |ĜN (x∗)− ĜNK(x̂NK
)| ≤ B

K . Together with (20), we get the desired inequality:

|ĜN (x∗)− ĜN (x̂NK
)| ≤ 2BN

K
.

9.3 Proof of Theorem 1
Proof. Let x̂N be optimal for maxx Ĝ

N (x). We first write∣∣∣G(x∗, λ)−G(x̂NK
, λ)
∣∣∣ ≤ ∣∣∣G(x∗, λ)− ĜN (x̂N , λ)

∣∣∣
+
∣∣∣ĜN (x̂N

, λ)− ĜN (x̂NK
, λ)
∣∣∣

+
∣∣∣ĜN (x̂NK

, λ)−G(x̂NK
, λ)
∣∣∣ (21)

Therefore, for any ξ ≥ 0, we obtain:

P
(∣∣∣G(x∗, λ)−G(x̂NK

,λ)
∣∣∣ ≥ ξ

)
≤ P

(∣∣∣G(x∗, λ)− ĜN (x̂N , λ)
∣∣∣ ≥ ξ

3

)
+ P

(∣∣∣ĜN (x̂N , λ)− ĜN (x̂NK
, λ)
∣∣∣ ≥ ξ

3

)
+ P

(∣∣∣ĜN (x̂NK
, λ)−G(x̂NK

, λ)
∣∣∣ ≥ ξ

3

)
(22)

Now, if we choose N,K such that 2BN
K ≤ ξ

3 , then according to Proposition 3 we have:

P
(∣∣∣ĜN (x̂N , λ)− ĜN (x̂NK

, λ)
∣∣∣ ≥ ξ

3

)
= 0 (23)

On the other hand, from Proposition (2) we can bound the probabilities as follows:

P
(∣∣∣G(x∗, λ)−G(x̂NK

, λ)
∣∣∣ ≥ ξ

3

)
≤ 2 exp

(
−2Nξ2

9M2

)
P
(∣∣∣ĜN (x̂NK

, λ)−G(x̂NK
, λ)
∣∣∣ ≥ ξ

3

)
≤ 2 exp

(
−2Nξ2

9M2

)
Combine the above with (23), we obtain the desired bound for P

(∣∣∣G(x∗, λ)−G(x̂NK
, λ)
∣∣∣ ≥ ξ

)
, which concludes our proof.

9.4 Proof of Corollary 1
This is a direct result of Theorem 1. That is, we replace ξ in Theorem 1 by α to get that if we choose α ≥ 6NB

K then

P
(∣∣∣G(x̂NK

, λ)−G(x∗, λ)
∣∣∣ ≤ α

)
≥ 1− 4 exp

(
− 2Nξ2

9M2

)
To achieve P

(∣∣∣G(x̂NK
, λ)−G(x∗, λ)

∣∣∣ ≤ α
)
≥ 1− β, we need to choose N such that

β ≥ 4 exp
(
− 2Nξ2

9M2

)
implying

N ≥ ln

(
4

β

)
9M2

2α2
,

as desired.



9.5 Proof of Proposition 4
For any n ∈ N, let us consider Mn = M × M × . . .M︸ ︷︷ ︸

n times

with entries

Mn
ss′ =

∑
(s0,s1,...,sn)∈Sn+1

s0=s,sn=s′

(
n−1∏
i=0

Msisi+1

)

Recall that Mss′ = exp
(

v(s)
µ

)
if s′ ∈ N(s) and Mss′ = 0 otherwise. We see that if n > |S|, then for any sequence

(s0, s1, . . . , sn) there is at least a pair sj = sk, 0 ≤ j, k ≤ n. Since the network is cycle-free, there is at least a pair (sj , sj+1)

such that Msjsj+1
= 0, leading to the fact that Mn

ss′ =
∑

(s0,s1,...,sn)∈Sn+1

s0=s,sn=s′

(∏n−1
i=0 Msisi+1

)
= 0 for any s, s′ ∈ S . Thus, if

n > |S| we have Mn = 0. We select n > |S| and write

(I − M)

(
n−1∑
t=0

Mt

)
= (I − Mn) = I,

which implies det(I − M) ̸= 0, or equivalently, I − M is invertible as desired.

9.6 Proofs of Theorems 2.
The proof of these theorem are based on two important lemmas, as explained below. Lemma 1 only applies when all the
defender’s rewards rl(s, xs) are non-negative. We then handle the general case in Lemma 2. Intuitively, these two lemmas
show relations in terms of the defender’s utilities (aka. objective functions F l(x) and F̃ (x)) between the original problem
(OPT) and the restricted problem (Approx-OPT) for any given defender’s interdiction strategy x.
Lemma 1. If rl(s, xs) ≥ 0 for any x ∈ X , then for any x,

1

1 + β2
F̃(x) ≤ F l(x) ≤ (1 + β1)F̃ (x).

The case that rl(s, xs) would take negative values is more challenging to handle. The following lemma gives general
inequalities for such a situation.
Lemma 2. If we choose κ =

∑
s∈L maxx

∣∣rl(s, xs)
∣∣ , then for any x ∈ X ,

1

1 + β2

(
F̃(x) + κ

)
≤ F l(x) + κ ≤ (1 + β1)

(
F̃(x) + κ

)
.

The proofs of the two lemmas are provided in the next sections. We will now use this two lemmas to prove Theorem 2 as
follows.

According to Lemma 2, we obtain:

1

1 + β2
max

x

(
F̃(x) + κ

)
≤ max

x

(
F l(x) + κ

)
≤ (1 + β1)max

x

(
F̃(x) + κ

)
, (24)

leading to the following chain of inequalities:

1

1 + β2

(
F̃(x∗) + κ

)
≤
(
F l(x∗) + κ

)
≤ max

x
(F l(x) + κ) ≤ (1 + β1)

(
F̃(x∗) + κ

)
.

where x∗ is the optimal defense strategy solution to (Approx-OPT). Since F̃(x∗) + κ,F l(x∗) + κ, and maxx(F l(x) + κ) are
all positive, we have:

F l(x∗) + κ

maxx(F l(x) + κ)
≥

1
1+β2

(
F̃(x∗) + κ

)
(1 + β1)

(
F̃(x∗) + κ

) =
1

(1 + β1)(1 + β2)

which implies: F l(x∗) + κ ≥ maxx∈X {F l(x)}
(1 + β1)(1 + β2)

+
κ

(1 + β1)(1 + β2)

or equivalently, F l(x∗) ≥ maxx∈X {F l(x)}
(1 + β1)(1 + β2)

− κ
β1 + β2 + β1β2

(1 + β1)(1 + β2)



which validate the first part of the theorem. For the second part, let x∗ be the interdiction strategy solution such that F̃(x∗) ≥
(1− ϵ)maxx F̃(x), then by using (24), we obtain the following chain of inequalities:

1

1 + β2

(
F̃(x∗) + κ

)
≤ 1

1 + β2
max

x

(
F̃(x) + κ

)
≤ max

x

(
F l(x) + κ

)
(25)

≤ (1 + β1)max
x

(
F̃(x) + κ

)
≤ (1 + β1)

(
1

1− ϵ
F̃(x∗) + κ

)
≤ 1 + β1

1− ϵ
(F̃(x∗) + κ)

Thus,

1

1 + β2

(
F̃(x∗) + κ

)
≤ F l(x∗) + κ ≤ max

x

(
F l(x) + κ

)
≤ 1 + β1

1− ϵ
(F̃(x∗) + κ)

=⇒ F l(x∗) + κ

maxx{F l(x) + κ}
≥ 1− ϵ

(1 + β1)(1 + β2)
, (26)

which further leads to:

F l(x∗) ≥ (1− ϵ)maxx{F l(x)}
(1 + β1)(1 + β2)

− κ
ϵ+ β1 + β2 + β1β2

(1 + β1)(1 + β2)
,

as desired.
For the case of additive error F̃(x∗) ≥ maxx F̃(x)− ϵ, similarly, we can write:

1

1 + β2

(
F̃(x∗) + κ

)
≤ F l(x∗) + κ ≤ max

x

(
F l(x) + κ

)
≤ (1 + β1)max

x

(
F̃(x) + κ

)
≤ (1 + β1)

(
F̃(x∗) + ϵ+ κ

)
,

which yields:

F l(x∗) + κ

maxx{F l(x) + κ}
≥ 1

(1 + β1)(1 + β2)

1

1 + ϵ/(F̃(x∗) + κ)
≥ 1

η

⇒ F l(x∗) ≥ 1

η
max

x
{F l(x)} − κ

η − 1

η
,

as desired, which completes our proof.

9.7 Proof of Lemma 1
Proof. Remind that we have β1 and β2 defined as follows:

β1 = max
x

max
s∈L


∑

τ∈∆+(s) exp
(

U(τ ;x)
µ

)
∑

τ∈∆(s) exp
(

U(τ ;x)
µ

)
 , β2 = max

x


∑

τ∈
⋃

s{∆+(s)} exp
(

U(τ ;x)
µ

)
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
 ,

For any defender strategy x ∈ X , we can re-write the defender’s expected utility as follows:

F l(x) =

∑
s∈L rl(s, xs)

(∑
τ∈∆(s) exp

(
U(τ ;x)

µ

)
+
∑

τ∈∆+(s) exp
(

U(τ ;x)
µ

))
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
+
∑

τ∈
⋃

s{∆+(s)} exp
(

U(τ ;x)
µ

) def
=

U
V

(27)

According to the definition of β1, we obtain:∑
τ∈∆+(s)

exp

(
U(τ ; x)

µ

)
≤ β1

∑
τ∈∆(s)

exp

(
U(τ ; x)

µ

)

=⇒ U ≤
∑
s∈L

rl(s, xs)

 ∑
τ∈∆(s)

(1 + β1) exp

(
U(τ ; x)

µ

)



In addition, we have: V ≥
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
. As a result, we obtain the following inequality:

F l(x) ≤

∑
s∈L rl(s, xs)

(∑
τ∈∆(s)(1 + β1) exp

(
U(τ ;x)

µ

))
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

) = (1 + β1)F̃(x) (∗)

On the other hand, according to the definition of β2, we obtain:∑
τ∈

⋃
s{∆+(s)}

exp

(
U(τ ; x)

µ

)
≤ β2

∑
τ∈

⋃
s{∆(s)}

exp

(
U(τ ; x)

µ

)

=⇒ V ≤
∑

τ∈
⋃

s{∆(s)}

exp

(
U(τ ; x)

µ

)
(1 + β2)

In addition, we have: U ≥
∑

s∈L rl(s, xs)
(∑

τ∈∆(s) exp
(

U(τ ;x)
µ

))
. As a result, we obtain:

F l(x) ≥

∑
s∈L rl(s, xs)

(∑
τ∈∆(s) exp

(
U(τ ;x)

µ

))
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
(1 + β2)

=
1

1 + β2
F̃(x) (∗∗)

The combination of (*) and (**) concludes our proof.

9.8 Proof of Lemma 2
Proof. We reuse the definitions of U and V as in the proof of Lemma 1. Similar to proof of Lemma 1, according to the definition
of β1, we obtain: ∑

τ∈∆+(s)

exp

(
U(τ ; x)

µ

)
≤ β1

∑
τ∈∆(s)

exp

(
U(τ ; x)

µ

)

Besides, according to the definition κ =
∑

s∈L maxx
∣∣rl(s, xs)

∣∣, we have rl(s, xs)+κ ≥ 0 for any x ∈ X . Thus, we can write:

U + κV =
∑
s∈L

(
rl(s, xs) + κ

) ∑
τ∈∆(s)

⋃
∆+(s)

exp

(
U(τ ; x)

µ

)
≤
∑
s∈L

(
rl(s, xs) + κ

) ∑
τ∈∆(s)

(1 + β1) exp

(
U(τ ; x)

µ

)
In addition, we have: V ≥

∑
τ∈

⋃
s{∆(s)} exp

(
U(τ ;x)

µ

)
. As a result, we obtain the following inequality:

F l(x) + κ =
U + κV

V
≤

∑
s∈L

(
rl(s, xs) + κ

) (∑
τ∈∆(s)(1 + β1) exp

(
U(τ ;x)

µ

))
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
= (1 + β1)

(
F̃(x) + κ

)
(28)

On the other hand, from the way we select κ, we have:

κ ≥
∑
s∈L

|rl(s, xs)| ≥
∑
s∈L

|rl(s, xs)|

∑
τ∈∆(s) exp

(
U(τ ;x)

µ

)
∑

τ∈
⋃

s′{∆(s′)} exp
(

U(τ ;x)
µ

)
=⇒

∑
s∈L

(
rl(s, xs) + κ

) ∑
τ∈∆(s)

exp

(
U(τ ; x))

µ

) ≥ 0



Besides, according to the definition of β2, we obtain:∑
τ∈

⋃
s{∆+(s)}

exp

(
U(τ ; x)

µ

)
≤ β2

∑
τ∈

⋃
s{∆(s)}

exp

(
U(τ ; x)

µ

)

=⇒ V ≤
∑

τ∈
⋃

s{∆(s)}

exp

(
U(τ ; x)

µ

)
(1 + β2)

As a result, we obtain the following inequalities,

F l(x) + κ ≥

∑
s∈L(r

l(s, xs) + κ)
(∑

τ∈∆(s) exp
(

U(τ ;x))
µ

))
V

≥

∑
s∈L(r

l(s, xs) + κ)
(∑

τ∈∆(s) exp
(

U(τ ;x))
µ

))
∑

τ∈
⋃

s{∆(s)} exp
(

U(τ ;x)
µ

)
(1 + β2)

=
1

1 + β2
(F̃(x) + κ). (29)

Combining (28) and (29) gives us the desired inequalities.

10 Solving the Restricted Problem in Section 6.3
In order to solve the restricted problem, we also propose to apply the binary search approach. The resulting sub-problem at
each binary search step can be formulated as follows:

max
x∈X

g̃(x, λ) =
∑
s∈L

∑
τ∈∆(s)

rl(s, xs) exp
(U(τ ; x)

µ

)
− λ

[∑
s∈L

∑
τ∈∆(s)

exp
(U(τ ; x)

µ

)]
(sub-Approx)

In the following, we present our theoretical results on the key underlying property of (sub-Approx), as well as new exact
solutions for solving (sub-Approx).

10.1 Unimodality
Our Theorem 3 shows that we can use a gradient-based method to obtain the unique global optimal solution to (sub-Approx).
Theorem 3. (sub-Approx) is unimodal; any local optimal solution x∗ of (sub-Approx) is also globally optimal.

Proof. The proof can be divided into two major steps:
Step 1: showing that (sub-Approx) can be converted into a (strictly) convex optimization problem. This step is done
via variable transformation. Recall that the adversary utility v(s; x) = v(s, xs) = wfxs + tf and defender utility rl(s; x) =

rl(s, xs) = wlxs + tl where wf < 0 and wl > 0. Essentially, we introduce a new variable ys = exp
(

v(s,xs)
µ

)
for all critical

nodes s ∈ L. We will show that the objective g̃(x, λ) of (sub-Approx) can be rewritten as a strictly concave function of {ys}.
For each trajectory τ ∈ ∆(s), let V s(τ) =

∑
s′∈τ, s′ ̸=s

v(s′; x), or equivalently, V s(τ) = U(τ ; x) − v(s; x), which is the

accumulated adversary utility over every node on τ except node s. We see that V s(τ) is independent of the defender coverage
probability xs at every critical node s ∈ L (by definition of ∆(s)). Therefore, we can reformulate the objective g̃(x, λ) of
(sub-Approx) as follows:

g̃(x, λ) =
∑
s∈L

rl(s, xs) exp

(
v(s; x)

µ

)
H(s)− λ

(∑
s∈L

exp

(
v(s; x)

µ

)
H(s)

)
.

where H(s) =
∑

τ∈∆(s) exp(V
s(τ)/µ). We thus can write g̃(x, λ) as function of y as follows:

g̃(y, λ) =
∑
s∈L

((
µ log(ys)− tf

) wl

wf
+ tl

)
ysH(s)− λ

(∑
s∈L

ysH(s)

)

=
∑
s∈L

µ
wl

wf
H(s) log(ys)ys − ysH(s)

(
µ
tfwl

wf
+ tl + λ

)
. (30)

Since wf/wl ≤ 0, it can be shown that each component µ wl

wf H(s) log(ys)ys is concave in ys, thus g̃(y, λ) is strictly concave

in y for all critical nodes s. Moreover, for any k ∈ [K], the constraint
∑

s∈Lk
xs ≤ Mk becomes

∑
s∈Lk

µ log(ys)−tf

wf ≤ Mk,
which is convex since wf < 0.



Step 2: proving global optimality via the KKT condition correspondence with variable transformation Under the vari-
able transformation as presented in Step 1, for notational convenience, let us define x̂s(·) : R → R and ŷs(·) : R → R such
that:

ŷs(xs) = exp

(
v(s, xs)

µ

)
x̂s(ys) =

µ log(ys)− tf

wf
,

i.e., the mappings from xs to ys and vice-versa.
Recall that the feasible strategy space of the defender X =

{
x :
∑

s∈Lk
xs ≤ Mk,∀k, xs ∈ [Lx, Ux]

}
. We thus can write

the Lagrange dual of (sub-Approx) as follows:

Lg(x, γγγ,ηηη1, ηηη2) = g̃(x, λ)−
∑
k

γk

(∑
s∈Lk

xs −Mk

)
−
∑
s

η1s(xs − Ux) +
∑
s

η2(xs − Lx).

Since x∗ is a local optimal solution for (sub-Approx), the KKT conditions imply that there are dual γγγ∗, ηηη1∗, ηηη1∗ ≥ 0 such that
the following constraints are satisfied:

g̃(x∗,λ)
∂xs

− γ∗
k − η1∗s + η2∗s = 0, where k such that s ∈ Lk

γ∗
k

(∑
s∈Lk

xs −Mk

)
= 0, ∀k

η1∗s (x∗
s − Ux) = 0

η2∗s (x∗
s − Lx) = 0

Lx ≤ x∗
s ≤ Ux∑

s∈Lk
xs −Mk, ∀k

(31)

By the variance transformation ys = exp
(

(wfxs+tf )
µ

)
, let y∗s = exp

(
(wfx∗

s+tf )
µ

)
and xs = x̂s(ys) = µ log(ys)−tf

wf for all
s ∈ L, we can write (31) equivalently as:

g̃(x∗,λ)
∂xs

∂x̂s(y
∗
s )

∂ys
− γ∗

k
∂x̂s(y

∗
s )

∂ys
− η1∗s

∂x̂s(y
∗
s )

∂ys
+ η2∗s

∂x̂s(y
∗
s )

∂ys
= 0

γ∗
k

(∑
s∈L

µ log(y∗
s )−tf

wf −M
)
= 0, ∀k

η1∗s

(
µ log(y∗

s )−tf

wf − Ux)
)
= 0

η2∗s

(
µ log(y∗

s )−tf

wf − Lx
)
= 0

Lx ≤ µ log(y∗
s )−tf

wf ≤ Ux∑
s∈Lk

µ log(y∗
s )−tf

wf ≤ Mk, ∀k.

(32)

The first condition of (32) can be written equivalently as follows:
g̃(y∗, λ)
∂ys

− γ∗
kI[s ∈ Lk]

∂x̂s(y
∗
s )

∂ys
− η1∗s

∂x̂s(y
∗
s )

∂ys
+ η2∗s

∂x̂s(y
∗
s )

∂ys
= 0,

where I[·] is the indicator function. This implies that y∗, γγγ∗, ηηη1∗, ηηη1∗ also satisfy the KKT conditions of the following (strictly)
convex optimization problem (i.e., the resulting problem of variable transformation discussed in Step 1).

max
y

g̃(y, λ) (33)

subject to
∑
s∈Lk

x̂s(ys) ≤ Mk, ∀k and x̂s(ys) ∈ [Lx, Ux].

Thus, y∗ is the unique global optimal solution to (33), which also means that x∗ is also the global optimal solution to
(sub-Approx) as desired.

10.2 Exact Solution.
Even though we can use a gradient-based method to obtain the unique global optimal solution to (sub-Approx), thanks to the
unimodality property shown above, the computational challenge is that the objective g̃(x, λ) still involves exponentially many
paths. Our idea is to decompose g̃(x, λ) into multiple terms (each term corresponds to a critical node s ∈ L) — which can be
computed using dynamic programming. Essentially, we create new graphs by keeping a node s ∈ L and remove every other
nodes in L. Let G(s) be the sub-graph created from the graph G by deleting all nodes in L except node s. Since we will be
dealing with several graphs, henceforth we denote all paths in any arbitrary graph G as Ω(G). The proposition below shows that
g̃(x, λ) can be decomposed into terms that can be efficiently computed based on sub-graphs G(s), ∀s ∈ S.



Proposition 5. g̃(x, λ) can be written as follows:∑
s∈L

( ∑
τ∋s

τ∈Ω(G(s))

[
rl(s, xs) exp

(U(τ ; x)
µ

)
− λ exp

(U(τ ; x)
µ

)])
(34)

The proof is straightforward, so we’ll skip the details. Given any sub-graph G(s), the terms in g̃(x, λ) (and their gradients)
can be computed by solving a system of linear equations, similarly as the approach described in in Algorithm 1.

10.3 Efficient Approximation Solution for the Restricted Problem
The exact method mentioned in Section 10.2 above might not scale up when |L| is large. In this section, we thus propose a new
approach which is both efficient and guarantees a bounded approximate solution for (OPT). Our main ideas can be summarized
as follows: (a) we identify a graph modification and solve (OPT) with the modified graph using the Algorithm 1; and (b) we
theoretically shows that this resulting solution (obtained from (a)) is also a bounded approximate solution for (OPT). We
elaborate our ideas in the following.

Network modification. We modify the network G by raising the costs of travelling between any pair of nodes in L in such
a way that β1 and β2 become arbitrarily small. We remark that, given any ϵ′ > 0, we can always modify the travelling costs
between pairs of nodes in L to obtain a modified network G′ such that the following conditions holds:

max
x

max
s∈L

{∑
τ∈∆+(s) exp

(
U(τ ;x)/µ

)∑
τ∈Ω,τ∋s exp

(
U(τ ;x)/µ

)} ≤ ϵ′ (35)

max
x

{∑
τ∈

⋃
s{∆+(s)} exp

(
U(τ ;x)/µ

)∑
τ∈Ω exp

(
U(τ ;x)/µ

) }
≤ ϵ′. (36)

We remind that ∆+(s) be the set of paths that cross s and at least another node in L and Ω is the set of all paths. We denote the
objective of (13) of the binary search step for (OPT) with respect to the modified network G′ as g(x, λ|G′). We can optimize
g(x, λ|G′) by running gradient descent. The problem maxx g(x, λ|G′) is not convex, yet we can provide the following strong
guarantee.

Solution theoretical bounds. Let us first define:

ρs =
∑

τ∈Ω,τ∋s
exp

(U(τ ;Lxe)
µ

)
, ∀s ∈ L

ρ =
∑

τ∈Ω
exp

(U(τ ;Lxe)
µ

)
where e is an all-one vector of size |L|. We remind that Lx and Ux are the lower and upper bounds on the resource coverage
xs at every critical node s ∈ L. We present our theoretical bound w.r.t our original problem (OPT) (the proof is presented in
the next section for the sake of clarity).

Theorem 4. If we run binary search to solve (OPT) with respect to the modified network G′ and obtain (x, λ), the following
performance bound is guaranteed:

F l(x) ≥
(
1/η
)
maxx{F l(x)} − κ

(
η−1/η

)
,

where η = (1 + β1)(1 + β2)
(
1 + ϵ′U

)
, where U is a constant independent of ϵ′, β1, β2.

Finally, Algorithm 2 describes the approximation scheme.

Algorithm 2: Solving (OPT) through the restricted interdiction problem (Approx-OPT)
- Create the new graph G′ by raising the traveling cost between any pair of nodes in L.
- Solve (OPT) using Alg. 1 with G′.
- Recover the original graph G and re-solve (OPT) to improve the solution obtained from the above step.

Remark 2. If β1, β2 and ϵ′ are small, then η would be close to 1 and x would be close to an optimal solution to (OPT). Note
that β1, β2 can be small in a real situation where the costs of traveling between critical nodes are expensive to the adversary
(e.g., critical nodes are far away from each other).



Proof of Theorem 4
To prove the result, we need the folllowing lemmas:
Lemma 3. For any (x, λ), then we have:

|g(x, λ|G′)− g̃(x, λ)| ≤ ϵ′
(
κmax

s
{ρs}+ λρ

)
.

Proof. Observing that {τ ; τ ∈ Ω, τ ∋ s} = ∆+(s) ∪ ∆(s) and ∆+(s),∆(s) are disjoint, we can decompose g(x, λ|G′) into
two separate terms, as follows:

g(x, λ|G′) =
∑
s∈L

∑
τ∈Ω
τ∋s

rfs (xs) exp

(
U(τ ; x)

µ

)
− λ

(∑
τ ′∈Ω

exp

(
U(τ ′; x)

µ

))

= g̃(x, λ) + T (x, λ), (37)

where the second term:

T (x, λ) =
∑
s∈L

rfs (xs)
∑

τ∈∆+(s)

exp

(
U(τ ; x)

µ

)
− λ

 ∑
τ∈

⋃
s∈L ∆+(s)

exp

(
U(τ ; x)

µ

) .

Moreover, remind that we have the definition of ρs and ρ:

ρs =
∑

τ∈Ω,τ∋s

exp

(
U(τ ;Lxe)

µ

)
, ∀s ∈ L ρ =

∑
τ∈Ω

exp

(
U(τ ;Lxe)

µ

)
According to conditions in Equation (35) and (36), we obtain:

max
x

max
s∈L


∑

τ∈∆+(s) exp
(

U(τ ;x)
µ

)
∑

τ∈Ω,τ∋s exp
(

U(τ ;x)
µ

)
 ≤ ϵ′ =⇒

∑
τ∈∆+(s)

exp

(
U(τ ; x)

µ

)
≤ ϵ′ρs, ∀x ∈ X , s ∈ L (38)

max
x


∑

τ∈
⋃

s{∆+(s)} exp
(

U(τ ;x)
µ

)
∑

τ∈Ω exp
(

U(τ ;x)
µ

)
 ≤ ϵ′ =⇒

∑
τ∈

⋃
s{∆

+(s)}

exp

(
U(τ ; x)

µ

)
≤ ϵ′ρ, ∀x ∈ X . (39)

By using these inequalities, we have:

|T (x, λ)| ≤
∑
s∈L

|rfs (xs)|ϵ′ρs + λϵ′ρ ≤ ϵ′
(
κmax

s
{ρs}+ λρ

)
. (40)

which concludes our proof.

Given λ, Lemma 4 below shows that any local optimal solution to maxx g(x, λ|G′) (i.e., the binary step of (OPT) with
modified G′) is in an O(ϵ′) neighborhood of optimal solutions to (sub-Approx): maxx g̃(x, λ), i.e., the binary step of the
restricted problem (Approx-OPT) with original graph G.
Lemma 4. Let x be a local optimal solution of maxx g(x, λ|G′) for a given λ, then we have:

max
x

{g̃(x, λ)} − g̃(x, λ) ≤ ϵ′H,

where H = 2

(
µρj + κ

|wf
j |
maxs{ρs}+ λρ

)
exp

(
wf

j (L
x−Ux)

µ

)
.

Proof. We reuse the decomposition of g(x, λ|G′) as described in Lemma 3. By taking the derivative of T (x, λ) w.r.t xj , j ∈ L,
we obtain:

∂T (x, λ)
∂xj

= wf
j

∑
τ∈∆+(j)

exp

(
U(τ ; x)

µ

)
+

1

µ

∑
s∈L

rfs (xs)
∑

τ∈∆+(s),τ∋j

wf
j exp

(
U(τ ; x)

µ

)

− λ

µ

 ∑
τ∈

⋃
s∈L ∆+(s),τ∋j

wf
j exp

(
U(τ ; x)

µ

) .



Thus, using (38) and (39), we get the inequality:∣∣∣∣∂T (x, λ)
∂xj

∣∣∣∣ ≤ ϵ′
(
|wf

j |ρ
j +

κ

µ
max

s
{ρs}+ λ

µ
|wf

j |ρ
)
. (41)

Now, let us consider the problem maxx{g(x, λ|G′)| x ∈ X}. We form its Lagrange dual as:

LG′
(x, γγγ,ηηη) = g(x, λ|G′)−

∑
k∈[K]

γk

(∑
s∈Lk

xs −Mk

)
−
∑
s

η1s(xs − Ux) +
∑
s

η2s(xs − Lx).

If x is a stationary point of maxx{g(x, λ|G′)| x ∈ X}, then the KKT conditions imply that there are γγγ∗, ηηη1∗, ηηη2∗ such that:
∂g(x, λ|G′)

∂xj
−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j = 0,

where I[·] is the indicator function. Note that ∂g(x,λ|G′)
∂xj

= ∂g̃(x,λ)
∂xj

+ ∂T (x,λ)
∂xj

. Thus, from (41) we have:∣∣∣∣∣∣∂g̃(x, λ)∂xj
−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∂g(x, λ|G
′)

∂xj
−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j

∣∣∣∣∣∣+
∣∣∣∣∂T (x, λ)

∂xj

∣∣∣∣
≤ ϵ′

(
|wf

j |ρ
j +

κ

µ
max

s
{ρs}+ λ

µ
|wf

j |ρ
)
. (42)

Let us now define a function Ĝ(x, λ) as follows:

Ĝ(x, λ) = g̃(x, λ) +
∑
s∈L

αs exp

(
wf

sxs + tfs
µ

)
,

where αs, ∀s ∈ L, are chosen as follows:

αs = −
∂g̃(x,λ)
∂xs

−
∑

k∈[K] γ
∗
kI[j ∈ Lk]− η1∗j + η2∗j

wf
s

µ exp
(

wf
sxs+tfs

µ

) .

Given αs defined as above, we obtain the following equations:

∂Ĝ(x, λ)
∂xj

−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j = 0, ∀j ∈ L. (43)

In the following, we first attempt to bound the gap
∣∣∣Ĝ(x, λ)− g̃(x, λ)

∣∣∣ for every defender strategy x. We then leverage this

bound together with the unimodality of Ĝ(x, λ) to bound the gap |maxx∈X g̃(x, λ)−g̃(x, λ)|. As we show later, the unimodality
of Ĝ(x, λ) is proved based on Equation 43 and the variable conversion trick used in the proof of Theorem 3.

Bounding the gap
∣∣∣Ĝ(x, λ)− g̃(x, λ)

∣∣∣. By taking the derivative of Ĝ(x, λ) w.r.t. xj , we get:

∂Ĝ(x, λ)
∂xj

=
g̃(x, λ)
∂xj

+
αjw

f
j

µ
exp

(
wf

j + tfj
µ

)
.

Combining with (42)-(43) we can bound αj , ∀j ∈ L, as follows:∣∣∣∣∣αjw
f
j

µ
exp

(
wf

j xj + tfj
µ

)∣∣∣∣∣ =
∣∣∣∣∣∂Ĝ(x, λ)

∂xj
− g̃(x, λ)

∂xj

∣∣∣∣∣
≤

∣∣∣∣∣∣∂Ĝ(x, λ)
∂xj

−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j

∣∣∣∣∣∣+
∣∣∣∣∣∣∂g̃(x, λ)∂xj

−
∑

k∈[K]

γ∗
kI[j ∈ Lk]− η1∗j + η2∗j

∣∣∣∣∣∣
≤ ϵ′

(
|wf

j |ρ
j +

κ

µ
max

s
{ρs}+ λ

µ
|wf

j |ρ
)

(44)



which implies: ∣∣∣∣∣αj exp

(
wf

j xj + tfj
µ

)∣∣∣∣∣ ≤ ϵ′µ

(
ρj +

κ

µ|wf
j |

max
s

{ρs}+ λ

µ
ρ

)
. (45)

Combining the above inequality with the definition of Ĝ(x, λ) we obtain the following inequality for all defender strategy
x ∈ X : ∣∣∣Ĝ(x, λ)− g̃(x, λ)

∣∣∣ ≤∑
j∈L

∣∣∣∣∣αj exp

(
(wf

j xj + tfj )

µ

)∣∣∣∣∣
≤
∑
j∈L

∣∣∣∣∣αj exp

(
wf

j xj + tfj
µ

)
exp

(
wf

j (xj − xj)

µ

)∣∣∣∣∣
≤ ϵ′

(
µρj +

κ

|wf
j |

max
s

{ρs}+ λρ

)
exp

(
wf

j (L
x − Ux)

µ

)
.

Bounding |max
x∈X

g̃(x, λ) − g̃(x, λ)|. Let us define H = 2

(
µρj + κ

|wf
j |
maxs{ρs}+ λρ

)
exp

(
wf

j (L
x−Ux)

µ

)
for notational

simplicity. We have the following remarks:

(i) From (43), we see that x is a stationary point of the maximization problem maxx∈X {Ĝ(x, λ)} and γγγ∗, ηηη1∗, ηηη2∗ are the
corresponding KKT multipliers.

(ii) With the change of variables used in the proof of Theorem 3, the function Ĝ(x, λ) becomes g̃(x̂(y), λ)+
∑

s∈L αsys, thus
Ĝ(x̂(y), λ) is strictly concave in y. Similar to Theorem 3, Ĝ(x, λ) is unimodal (i.e., any local optimum is a global one).

Thus, x is also an optimal solution to maxx∈X Ĝ(x, λ). As a result, we now can bound the gap |maxx∈X g̃(x, λ)− g̃(x, λ)| as
follows:

|max
x∈X

g̃(x, λ)− g̃(x, λ)| ≤ |max
x∈X

g̃(x, λ)− Ĝ(x, λ)|+ |Ĝ(x, λ)− g̃(x, λ)|

≤ |max
x∈X

g̃(x, λ)−max
x∈X

Ĝ(x, λ)|+ ϵ′H
2

. (46)

We consider the following two cases:

• If maxx∈X g̃(x, λ) ≥ maxx∈X Ĝ(x, λ). Let x∗ be optimal for maxx∈X g̃(x, λ), we have

|max
x∈X

g̃(x, λ)−max
x∈X

Ĝ(x, λ)| = g̃(x∗, λ)−max
x∈X

Ĝ(x, λ)

≤ g̃(x∗, λ)− Ĝ(x∗, λ)

≤ ϵ′H
2

(47)

• If maxx∈X g̃(x, λ) < maxx∈X Ĝ(x, λ), then we have

|max
x∈X

g̃(x, λ)−max
x∈X

Ĝ(x, λ)| = max
x∈X

Ĝ(x, λ)−max
x∈X

g̃(x, λ)

≤ Ĝ(x, λ)− g̃(x, λ)

≤ ϵ′H
2

(48)

Combine (46)-(47)-(48) we obtain:
|max

x∈X
g̃(x, λ)− g̃(x, λ)| ≤ ϵ′H

which is the desired inequality, completing our proof.

Lemma 5. If we run binary search to solve (OPT) with the modified network G′ and obtain (x, λ), the following performance
bound is guarantee for (Approx-OPT):

F̃(x) ≥ max
x

{F̃ (x)} − ϵ′(H+ 2C)∑
s∈L

∑
τ∈∆(s)

exp
(

U(τ ;Uxe)
µ

) (49)

where the constant C =
(
κmaxs{ρs}+ λρ

)
.



Proof. Let (x∗, λ∗) be the output of the bisection (aka binary search) to solve the restricted interdiction problem (Approx-OPT).
Based on the above two lemmas, we now try to bound the gap |λ− λ∗| (based on which we can bound maxx∈X F̃(x)− F̃(x)
as we will explain later).

First, since (x, λ) is an output of binary search for solving (OPT) with the modified network G′, we have |g(x, λ|G′)| ≤ ξ,
where ξ is a positive constant depending on the precision of the binary search. In fact, this constant can be made arbitrarily
small and therefore, we can remove it from the rest of our proof for the sake of presentation — that is, in the following, we
simply consider |g(x, λ|G′)| = 0. Now according to Lemma 3, we have:

|g(x, λ|G′)− g̃(x, λ)| ≤ ϵ′
(
κmax

s
{ρs}+ λρ

)
= ϵ′C (50)

Since |g(x, λ|G′)| = 0 we have |g̃(x, λ)| ≤ ϵ′C.
On the other hand, since (x∗, λ∗) is the result of binary search for (Approx-OPT), we have: g̃(x∗, λ∗) = 0 and λ∗ =

maxx∈X F̃ (x). We denote by:
K̃(λ) = max

x∈X
g̃(x, λ)

which is monotonic decreasing in λ. In addition, K̃(λ∗) = g̃(x∗, λ∗) = 0. According to Lemma 4:

K̃(λ)− ϵ′H ≤ g̃(x, λ) ≤ K̃(λ). (51)

As a result, we obtain the following chain of inequalities:

ϵ′H ≥ |K̃(λ)− g̃(x, λ)|
(a)

≥ |K̃(λ)| − |g̃(x, λ)| ≥ |K̃(λ)| − ϵ′C (52)

=⇒ |K̃(λ)| ≤ ϵ′(H+ C) (53)

where (a) is due to the triangle inequality. We further have K̃(λ∗) = 0, leading to:

|K̃(λ)− K̃(λ∗)| ≤ ϵ′(H+ C)

Since K̃(λ) is differentiable in λ, the mean value theorem tells us that there is α ∈ [λ, λ∗] such that:

|K̃(λ)− K̃(λ∗)| = K̃ ′(α)|λ− λ∗| ≤ ϵ′(H+ C). (54)

We denote by x̃ the solution to K̃(α) = maxx∈X {g̃(x, α)}. We can compute the gradient, K̃ ′(α), using the Danskin’s theorem,
as follows:

|K̃ ′(α)| =

∑
s∈L

∑
τ∈∆(s)

exp

(
U(τ ; x̃)

µ

) ≥
∑
s∈L

∑
τ∈∆(s)

exp

(
U(τ ;Uxe)

µ

)
,

Together with (54) we obtain the bound:

0 ≤ λ∗ − λ ≤ ϵ′(H+ C)∑
s∈L

∑
τ∈∆(s) exp

(
U(τ ;Uxe)

µ

) . (55)

Given the above bound on λ∗ − λ, we are now going to bound maxx∈X F̃(x) − F̃(x). From the inequality |g̃(x, λ)| ≤ ϵ′C
claimed above (Equation 50), we have:∣∣∣∣∣∣

∑
s∈L

∑
τ∈∆(s)

rl(s, xs) exp

(
U(τ ; x)

µ

)
− λ

∑
s∈L

∑
τ∈∆(s)

exp

(
U(τ ; x)

µ

)∣∣∣∣∣∣ ≤ ϵ′C

which implies ∣∣∣F̃(x)− λ
∣∣∣ ≤ ϵ′C∑

s∈L
∑

τ∈∆(s) exp
(

U(τ ;x)
µ

) ≤ ϵ′C∑
s∈L

∑
τ∈∆(s) exp

(
U(τ ;Uxe)

µ

)
=⇒ F̃(x) ≥ λ− ϵ′C∑

s∈L
∑

τ∈∆(s) exp
(

U(τ ;Uxe)
µ

)



As a result, we obtain the following bounds:

λ∗ = max
x∈X

F̃(x) ≥ F̃(x) ≥ λ− ϵ′C∑
s∈L

∑
τ∈∆(s) exp

(
U(τ ;Uxe)

µ

)
=⇒ max

x∈X
F̃(x)− F̃(x) ≤ λ∗ − λ+

ϵ′C∑
s∈L

∑
τ∈∆(s) exp

(
U(τ ;Uxe)

µ

) ≤ ϵ′(H+ 2C)∑
s∈L

∑
τ∈∆(s) exp

(
U(τ ;Uxe)

µ

) .
which concludes our proof.

We now get back to the main proof of Theorem 4. Essentially, Theorem 4 is a direct result of Theorem 2 and Lemma 5
with the constant:

U =
H+ 2C

(minx∈X F̃(x) + κ)
∑

s∈L
∑

τ∈∆(s) exp
(
U(τ ;Uxe)/µ

) .
We complete the proof.

11 NP-harness
Our Theorem 5 below shows that the original problem (OPT) is essentially NP-Hard for a rational adversary.
Theorem 5. The problem (OPT) is NP-Hard for µ = 0.

Proof. We do a reduction from exact 3-Cover problem, where given m items {1, . . . ,m} and a collection of n subsets
{S1, . . . , Sn} with Sv ⊂ {1, . . . ,m} each of size 3, i.e., |Sv| = 3 for v ∈ {1, . . . , n}, the decision problem is whether
there is a cover that contains each item exactly once. This is a known NP-Hard problem. Also, clearly any valid cover must be
of m/3 number of subsets.
Game instance construction given the 3-Cover problem Given an exact 3-Cover problem, we form an instance of our
network security game as follows: The critical nodes can be one of m + 1 types, among which the first m types are labeled
1, . . . ,m and the last type is labeled red. In addition, there are a total of n − m/3 + m defender resources. Among these
resources, n − m/3 resources, denoted by R1, . . . , Rn−m/3, can defend nodes of type red (we call these the red resources).
The remaining m resources are denoted by r1, . . . , rm, where resource rj can defend a node of type j.

We form n sub-graphs — each sub-graph corresponds to a subset Sv = {i, j, k} shown below in the picture. The sub-graph
for Sv has one critical node of type red and three critical nodes labeled (v, i), (v, j), (v, k) of types i, j, k respectively. There
is an initial non-critical node s0 and an end non-critical node se in the sub-graph. A direct edge also connects s0 to se, called
a dummy edge. We can join all the n sub-graphs by making a source node and connect the source node to all s0 for every
sub-graph and a sink node and connect all se of each sub-graph to the sink node (see below).

s0

v, i

v, j

v, k

se

Source
Sink

For any node, p denotes the probability the defender protects that node. We set the payoff of the adversary for the critical
nodes as ua(p) = −50p + 50(1 − p) − Kp log p = 50 − 100p − Kp log p where the constant K = 100

log( n−m/3+1
n−m/3+0.5 )

> 0.

The attacker payoff of skipping all critical nodes via the bottom edge in each sub-graph is 0. On the other hand, the defender’s
payoff, when an adversary visits a critical node is set to ud(p) = −100(1− p)− ϵ for some small ϵ > 0. Thus, the defender’s
payoff is always strictly negative if the attacker crosses any critical node. When the adversary does not visit any critical node,
the defender payoff is 0. This means that any defender optimal strategy gives the defender a maximum payoff of at most 0.



Problem reduction. We claim that there exists an exact 3-Cover if and only if the defender’s optimal expected payoff for the
corresponding network interdiction game is 0.

First, assume there is an exact 3-Cover, then we show that the following strategy provides a payoff of 0 to the defender: (i)
the defender allocates the n−m/3 red resources R1, . . . , Rn−m/3 to the red nodes in the n−m/3 sub-graphs corresponding
to non-cover subsets; and (ii) for the m/3 sub-graphs corresponding to subsets in cover, the defender allocates the m resources
r1, . . . , rm to the three nodes in each sub-graph. This ensures that either the red node or the three nodes (v, i), (v, j), (v, k) are
completely protected in every sub-graph Sv . Given this strategy of the defender, we note that in any non-dummy path, there
are exactly two critical nodes — one node will be protected by the defender with a probability of 1 and the other critical node
is protected with a probability of zero. As a result, if the adversary chooses this path, the adversary will obtain a total expected
payoff over these two nodes as equal to −50 + 50 = 0 (given p log p = 0 when p is either 0 or 1). Breaking ties in favor of
defender [Leitmann, 1978], the adversary will choose one of the bottom dummy edges, providing an expected payoff of zero
for the defender. As we discussed previously, the maximum payoff the defender can achieve is at most 0. Therefore, the above
strategy is an optimal strategy for the defender that leads to the maximum defender payoff of 0.

Next, assume that the defender gets an optimal expected payoff of 0 and the equilibrium strategy is a vector of probability
values for each critical node p∗. As the expected payoff is 0, the adversary must have chosen one of the bottom edges. Let us
analyze one path through the critical nodes that has p∗v,r on red node and p∗v,i on the other node of type i. The adversary payoff
for choosing this path is 100− 100(p∗v,r + p∗v,i)−Kp∗v,r log p

∗
v,r −Kp∗v,i log p

∗
v,i. This adversary payoff for this path must be

≤ 0 (since adversary chooses the bottom edge). Or by rearranging and dividing by 100,
p∗v,r(1 + (K/100) log p∗v,r) + p∗v,i(1 + (K/100) log p∗v,i) ≥ 1 (56)

Based on Eq. 56, we are going to show that the red nodes are uncovered (i.e., p∗v,r = 0) for exactly m/3 sub-graphs. First, since
we have n−m/3 defender resources that can cover red nodes and we have n red nodes in total (i.e., one red node for each of
n sub-graphs), the number of red nodes are uncovered (i.e., p∗v,r = 0) is ≤ m/3. Furthermore, we will show by contradiction
that the other situation of p∗v,r = 0 for < m/3 sub-graphs cannot occur. To prove by contradiction, assume that p∗v,r = 0 for
< m/3 sub-graphs or in other words p∗v,r > 0 for ≥ n−m/3+1 graphs. In the following, we prove that this assumption leads
to a contradiction and hence this assumption cannot hold.

We observe that p∗v,i(1 + (K/100) log p∗v,i) ≤ 1. Thus, from Eq. 56, we obtain:

p∗v,r(1 + (K/100) log p∗r) ≥ 0 (57)

Let P ⊂ {1, . . . , n} be the subset for which p∗v,r > 0 for v ∈ P (and by our assumption |P | ≥ n − m/3 + 1). For any
such p∗v,r > 0 with v ∈ P , from Eq. 57, we must have 1 + (K/100) log p∗v,r ≥ 0, which when rearranged gives p∗v,r ≥
exp(−100/K). Summing over all v ∈ P , we get∑

v∈P

p∗v,r ≥ |P | exp(−100/K)

The LHS above is
∑

v∈P p∗v,r ≤ n − m/3 (as p∗v,r = 0 for v /∈ P and there are only n − m/3 red resources). With
K = 100

log( n−m/3+1
n−m/3+0.5 )

and the fact that |P | ≥ n−m/3 + 1, we get the RHS is ≥ n−m/3 + 0.5. This is a contradiction. Thus,

the assumption that p∗v,r = 0 for < m/3 sub-graphs does not hold.
Therefore, the red nodes are uncovered (i.e., p∗v,r = 0) for exactly m/3 sub-graphs. We note that if p∗v,r = 0, then p∗v,i = 1

in order to satisfy Eq. 56. And with the same reasoning for other non-dummy paths in the same sub-graph Sv = {i, j, k}, if
p∗v,r = 0 then p∗v,i = p∗v,j = p∗v,k = 1. Remember that each defender resource rj among the m (non-red) defender resources
can only protect a node of type j. This means the m non-red nodes in these m/3 sub-graphs are from m different types. As a
result, we obtain the satisfied cover for the original 3-Cover problem — each subset belonging to this cover has three items that
correspond to the three non-red nodes of one of the above m/3 sub-graphs.

12 Choosing N and K for the LiSD
We provide experiments to justify our choices of N and K for the LiSP described. We first fix N = 90 and vary K from 5
to 100. For each value of K, we generate 10 independent instances and solve them using the MILP approach. The means and
standard deviations of the optimal values are reported in Tab. 3. It can be seen that the optimal values given by K = 20 are
only 0.3% different from those given by the largest value of K (i.e., K = 100). This indicates that K = 20 would be sufficient
for the PL approximation to achieve insignificant approximation errors. We further fix K = 20 and vary N from 20 to 150.
Each column is also computed using 10 independent game instances of the same size and report optimal values in Tab. 4. It
can be seen that the optimal values given by N = 90 are only about 3% different from those from the largest value of N , i.e.,
N = 150. We therefore select N = 90 for the MILP experiments.

We choose N = 90 and K = 20 for the LiSD approach. According to the above analyses, these choices would suffice to
guarantee low practical approximation errors stemming from both path-sampling and PL approximation. We use GUROBI (a
SOTA MILP solver) to solve (MILP). All our experiments were run on a 2.1 GHz CPU with 128GB RAM.



K 5 10 20 30 40 100
mean 3.13 3.15 3.16 3.17 3.17 3.17
std 0.11 0.12 0.12 0.12 0.12 0.12

Table 3: Optimal values given by LiSD with different values of K.

N 30 60 90 100 120 150
mean 3.10 3.15 3.22 3.18 3.15 3.20
std 0.18 0.18 0.09 0.10 0.12 0.11

Table 4: Optimal values given by LiSD with different values of N .

13 Zero-sum Game Model

13.1 Problem Formulation

In this section we discuss a zero-sum game model that is often used in adversarial settings, in which the aim of the defender is
to minimize the expected utility of the adversary. The adversary’s expected utility can be computed as follows:

Ef (x) =
∑
τ∈Ω

U(τ ; x)
exp

(
U(τ ;x)

µ

)
∑

τ ′∈Ω exp
(

U(τ ′;x)
µ

)
The zero-sum game model can then be formulated as follows:

min
x∈X

Ef (x) (OPT-zerosum)

which is generally non-convex in x. Since it shares the same structure with the non-zero-sum game model considered in the
main body of the paper, our approximation method based on the restricted problem still applies. Here, instead of directly solve
the non-convex problem (OPT-zerosum), we propose to optimize the following log-sum objective, which is more tractable to
handle

Γ(x) = µ log
(∑

τ∈Ω
exp

(
U(τ ; x)

µ

))
It can be seen that Γ(x) has a log-sum-exp convex form of a geometric program, thus it is convex [Boyd et al., 2004]. From

the results in Section 6.1, we further see that Γ(x) can be computed by solving a system of linear equations, which can be done
in poly-time. Thus, the optimization problem maxx Γ(x) can be solved in poly-time. We discuss in the following a connection
between (OPT-zerosum), the alternative formulation maxx Γ(x) and the a classical shortest-path network interdiction problem
[Smith and Song, 2020; Israeli and Wood, 2002]. To facilitate explanation of this point, let us consider the following shortest-
path network interdiction problem:

min
x∈X

{
T (x) = max

τ∈Ω
U(τ ; x)

}
. (OPT-shortest-path)

It is known that the above shortest-path network interdiction problem can be formulated as a mixed-integer linear program and
is NP-hard [Israeli and Wood, 2002]. We first bound the gap between Γ(x) and T (x) for any x ∈ X in Lemma 6 below

Lemma 6. For x ∈ X , let τ∗ = argmaxτ∈ΩU(τ ; x) (i.e., the best trajectory which gives the highest adversary utility),
Ω∗ = {τ | U(τ ; x) = U(τ∗; x)} (i.e., the set of all trajectories with the same highest utility), and α = {U(τ∗; x) −
maxτ∈Ω\Ω∗ U(τ ; x)}, then we have:

|Γ(x)− T (x)| ≤ µ log

(
|Ω∗|+ |Ω\Ω∗|

exp(α/µ)

)
.

As a result, limµ→0 Γ(x) = U(τ∗).



Proof. We can write:

Γ(x) = µ log

(∑
τ∈Ω

exp

(
U(τ ; x)

µ

))

= µ log

|Ω∗| exp
(
U(τ∗; x)

µ

)
+

∑
τ∈Ω\Ω∗

exp

(
U(τ ; x)

µ

)
≤ µ log

(
|Ω∗| exp

(
U(τ∗; x)

µ

)
+ (|Ω\Ω∗|) exp

(
U(τ∗; x)− α

µ

))

= U(τ∗; x) + µ log

(
|Ω∗|+ (|Ω\Ω∗|) exp

(
−α

µ

))
(58)

Moreover, we have Γ(x) ≥ U(τ∗; x). Combine this with (58) we obtain the desired inequality. The limit limµ→0 Γ(x) = U(τ∗)
is just a direct result of this equality, concluding our proof.

Combine Lemma 6 with Proposition 1, we obtain a bound for |Ef (x)− Γ(x)|
Lemma 7. Let L∗ = maxτ∈Ω,x∈X |U(τ ; x)|, we have

|Ef (x)− Γ(x)| ≤ L∗ + 1

1 + |Ω∗|
|Ω\Ω∗| exp

(
α
µ

) + µ log

|Ω∗|+ |Ω\Ω∗|

exp
(

α
µ

)


We are now ready to assess the quality of a solution given by the alternative formula maxx Γ(x) and the zero-sum game
ones (OPT-zerosum) and (OPT-shortest-path). Let Γ∗ = maxx Γ(x), E∗, T ∗ be the optimal value of (OPT-zerosum),
(OPT-shortest-path), and x be the optimal solution to maxx Γ(x). Given any x ∈ X , let:

α(x) = max
τ∈Ω

U(τ ; x)−max{U(τ ; x)| τ ∈ Ω, U(τ ; x) < max
τ∈Ω

U(τ ; x)}

Intuitively, α(x) is the adversary loss in utility if the adversary chooses the second best trajectory instead of the optimal
one. In addition, let C(x) be the number of best paths in Ω, that is, C(x) = | argmaxτ∈Ω U(τ ; x)|. We have the following
results bounding the gaps between the convex problem maxx Γ(x) and two baselines, i.e., the classical shortest-path network
interdiction and its bounded rational version, as functions of µ. The results imply that the optimal values and optimal solutions
to maxx Γ(x) converge to those of (OPT-shortest-path) and (OPT-zerosum) when µ goes to zero.

Proposition 6. Let x∗ = argmaxxΓ(x) and

κ1(µ)=max
x

µ log

|C(x) +
|Ω| − |C(x)

exp
(

α(x)
µ

)


κ2(µ)=κ1(µ) + max
x

µ
L∗ + 1

1 + |C(x)
|Ω|−|C(x) exp

(
α(x)
µ

)
 (59)

The following results hold

(i) |Γ∗ − T ∗| ≤ κ1(µ), and |T (x∗)−maxx{T (x)}| ≤ 2κ1(µ)

(ii) |Γ∗ − E∗| ≤ κ2(µ), and |Ef (x∗)−maxx{Ef (x)}| ≤ 2κ2(µ)

(iii) lim
µ→0

κ1(µ) = κ2(µ) = 0

Proof. For (i), we first note that Γ(x) ≤ T (x) for any x ∈ X . Thus Γ∗ ≤ T ∗. Let x be an optimal solution to
(OPT-shortest-path), we write:

|Γ∗ − T ∗| = T ∗ − Γ∗ = T (x)−max
x

Γ(x)

≤ T (x)− Γ(x)
(a)

≤ κ1(µ).



Number of nodes (|S|)
Method 20 40 60 80 100

Baseline 99.95 ± 0.00 99.88 ± 0.07 99.74 ± 0.18 99.69 ± 0.23 99.07 ± 0.52

Table 5: Objective values of the optimal solutions obtained from the Baseline as a percentage of the optimal objective value obtained using
our approach for handling an exponential number of paths. We use p = 0.8, µ = 2. 20 datasets were randomly generated for each setting
and the mean and standard deviation are reported.

where (a) is due to Proposition 1. Moreover, considering the gap |T (x∗)−maxx T (x)|, we have the chain of inequalities

|T (x∗)−max
x

{T (x)}| ≤ |T (x∗)−max
x

{Γ(x)}|+ |Γ∗ − T ∗|

= |T (x∗)− Γ(x∗)|+ |Γ∗ − T ∗|
≤ 2κ1(µ).

For (ii), let x̂ be an optimal solution to (OPT-zerosum). Similarly, we can write

|Γ∗ − E∗| = E∗ − Γ∗ = Ef (x̂)−max
x

Γ(x)

≤ Ef (x̂)− Γ(x̂)
(b)

≤ κ2(µ). (60)

where (b) is due to Lemma 7. Moreover, considering the gap |Ef (x∗)−maxx Ef (x)|, we write

|Ef (x∗)−max
x

{Ef (x)}| ≤ |Ef (x∗)−max
x

{Γ(x)}|+ |Γ∗ − E∗|

= |Ef (x∗)− Γ(x∗)|+ |Γ∗ − E∗|
≤ 2κ2(µ).

The limits lim
µ→0

κ1(µ) = κ2(µ) = 0 are obviously verified, which concludes the proof.

In fact, we can control the adversary’s rationality by adjusting µ, i.e., the adversary would be more rational as µ→0 (perfectly
rational if µ = 0), and be irrational as µ→∞.

13.2 Experiment Results for Zero-Sum Games
Note that since the log-sum alternative minx{Γ(x)} is a convex problem, both the Baseline and using gradient descent on top
of our proposed approach to handle the exponential number of paths in Section 6 are able to solve it to optimality. However, we
see in Table 5 the performance of the Baseline slightly tips off as the graph size |S| increases, due to the fact that the objective
in the baseline is estimated by sampling and the number of paths blows up exponentially with |S|.

As the rationality of the adversary increases (associated with the decrease in µ), we expect that the optimal defender reward
will decrease as the adversary is able to take the best paths with a larger probability. Moreover, for a zero-sum game, by the
guarantees in Proposition 6 we can claim that the optimal solution would converge to the solution of (OPT-shortest-path). We
note both the reward decrease and convergence in Figure 1.



Figure 1: Optimal value Γ∗ as a function of µ for a fixed synthetic dataset (|S| = 50, p=0.8).
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