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Abstract

Distributionally robust optimization (DRO) has shown lot of promise in providing
robustness in learning as well as sample based optimization problems. We endeavor
to provide DRO solutions for a class of sum of fractionals, non-convex optimization
which is used for decision making in prominent areas such as facility location and
security games. In contrast to previous work, we find it more tractable to optimize
the equivalent variance regularized form of DRO rather than the minimax form.
We transform the variance regularized form to a mixed-integer second order cone
program (MISOCP), which, while guaranteeing near global optimality, does not
scale enough to solve problems with real world data-sets. We further propose
two abstraction approaches based on clustering and stratified sampling to increase
scalability, which we then use for real world data-sets. Importantly, we provide near
global optimality guarantees for our approach and show experimentally that our
solution quality is better than the locally optimal ones achieved by state-of-the-art
gradient-based methods. We experimentally compare our different approaches and
baselines, and reveal nuanced properties of a DRO solution.

1 Introduction

Distributionally robust optimization (DRO) is a popular approach employed in robust machine
learning. Mostly, if not always, these works have focussed on the task of classification or regression.
However, often in practical applications the end goal of learning is a decision output z, which requires
yet another complex optimization that uses the output x̂1, . . . , x̂N of a regressor f(·). For example,
in facility location problem the learning of facility values is followed by an optimization using the
values predicted to decide where to locate facilities and in security games adversary behavior model
is learned and then an optimal defense allocation computed based on the learned model. Often the
learning output is provided as public datasets with no access to the underlying private dataset used for
such learning. In this set-up, we aim to provide robustness at the decision making level with access to
only the non-robust learning output x̂1, . . . , x̂N .

However, often the objective F (z, x) of decision optimization is non-convex in the learning system
output x unlike the convex objective of classification or regression, presenting significant scalability
challenges. In general, for decision making and specifically for the problem domains we consider,
global optimality is important as sub-optimal decisions can lead to large revenue loss or loss of life;
thus, the local optimality provided by gradient based methods is not sufficient. As a consequence, in
this paper, we study the scenario of calculating DRO decisions using the given multi-dimensional
real valued outputs x̂1, . . . , x̂N of a non-robust learned f . A first result (Theorem 1) characterizes the
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quality of DRO decision output compared to the scenario where we know the true f∗. Our main focus
is on addressing the scalability issue for the DRO decision making problem for a particular, but widely
used, class of sum of fractionals non-convex objective. This objective arises from the well-known
discrete choice models [Train, 2003] of human behavior, which is known to not have scalable globally
optimal solutions [Schaible, 1995, Li et al., 2019]; we use this for tackling two different decision
optimization problem in facility location and a robust version of Bayesian Stackelberg security games
problem with quantal response. As far as we know, this is a first attempt to solve the aforementioned
non-convex problems in a DRO setting to near global optimality.

Our first contribution is a modelling construct, where we reformualate the variance regularized
form [Duchi and Namkoong, 2019] of our non-convex sum of fractionals objective as a mixed integer
second order cone program (MISOCP). While the MISOCP form provides more scalability than
the original formulation and guaranteed solution quality (Theorem 2), it still does not scale to real
world sized datasets. Our second contribution is a pair of approaches that achieves further scalability
by splitting the problem space into sub-regions and solving a smaller MISOCP over representative
samples from the sub-regions. Under mild conditions, both approaches provide global optimality
guarantees (Theorem 3, 4).

Our final contribution is detailed experiments validating the scalability of our approaches on a simu-
lated security game problem as well as two variants of facility location using park and ride data-sets
from New York [Holguin-Veras et al., 2012]. We compare with two gradient-based approaches [Lin
et al., 2020] and show the superior solution quality achieved by our approach, which also reveals the
need for global optimality. We further show a nuanced property of the DRO solution in providing
better decisions for low probability scenarios over non-robust versions. Overall, our work provides
desired robustness with globally optimal solution guarantees.

Related work: Our work is built on a recent line of research that connects the concepts of DRO and
variance regularization [Duchi and Namkoong, 2019, Duchi et al., 2021, Lam, 2016, Maurer and
Pontil, 2009, Staib et al., 2019]. While most the previous studies along this research line focus on
convex and continuous problems or problems with submodular objectives, our work concerns a class
of DRO problems with fractional structures, which are highly non-convex and requires new technical
developments for globally optimal solution. Recent work Yan et al. [2020], Qi et al. [2021] has
addressed non-convex objectives in DRO using gradient based methods that converge to stationary
points, which is insufficient for decision making as we experimentally show that stationary points
and globally optimal points can yield very different decision utilities.

The literature on DRO is vast and we refer the reader to Rahimian and Mehrotra [2019] for a
review. DRO methods can be classified by different ways to define ambiguity sets of distributions,
for instance, ambiguity sets based on ϕ-divergences [Ben-Tal et al., 2013, Duchi and Namkoong,
2019, Staib et al., 2019] or Wasserstein distances [Pflug and Wozabal, 2007, Esfahani and Kuhn,
2018, Shafieezadeh-Abadeh et al., 2015, Blanchet and Murthy, 2019]. In this work, we focus on
ϕ-divergence based models, motivated by their interesting connections with variance regularization
and the tractability of the resulting non-convex DRO models.

We show that our DRO methods can be used in some popular decision-making problems such as
Stackelberg security game (SSG) with Quantal Response [Tambe, 2011, Xu, 2016, Fang et al., 2017,
Sinha et al., 2018, Yang et al., 2012, Haghtalab et al., 2016] or competitive facility location under
random utilities [Benati and Hansen, 2002, Freire et al., 2016, Mai and Lodi, 2020, Dam et al., 2021].
To the best of our knowledge, a DRO Bayesian model has not been studied in existing SSG works. In
the context of competitive facility location under random utilities, we seem to be the first to bring
DRO as a consideration. We handle a DRO version of a facility cost optimization problem, which has
also never been studied in prior work.

2 Background, Preliminary Notation and Result

We use bold fonts for vectors and non-bold font for vector components and scalars, e.g., xj is a
component of x. [N ] denotes {1, . . . , N}. A d-dimensional vector is written as x = (xj)j∈[d] or
as (x1, . . . , xd). The positive part of a vector x is x+ = (max(0, xj))j∈[d], and the negative part is
x− = (min(0, xj))j∈[d]. 0, 1 represent the all zero and all one vector.
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Distributionally Robust Optimization: Consider a function F with inputs being a decision variable
z and parameter x ∈ X . Both z and x lie in an Euclidean space and both are constrained by
linear constraints; for notational ease we skip writing the constraints in the general formulation.
We seek to maximize the following objective function maxz EP [F (z, x)], where x is distributed
according to P . The details of how P arises from an underlying regression problem is stated later
in the text just before Theorem 1. For many classes of distributions the above is generally not
tractable and one needs to sample x from P . Let x̂1, . . . , x̂N be N samples, we can solve the
sample average approximation (SAA) problem instead maxz

1
N

∑
n∈[N ] F (z, x̂n). Let P̂N be the

empirical distribution induced by the samples. The SAA above is same as maxz EP̂N
[F (z, x)]. A

distributionally robust version of the SAA problem is maxz minP̃∈Pξ,N

{
EP̃ [F (z, x)]

}
, where the

ambiguity set Pξ,N =
{
P̃ | Dϕ(P̃ ||P̂N ) ≤ ξ/N

}
, and Dϕ(P ||Q) is the χ2 divergence: Dϕ(P ||Q) =

1
2

∫
(dP/dQ− 1)2dQ. The above optimization can be written equivalently as (∆ξ,N defined below)

max
z

min
p∈∆ξ,n

{ ∑
i∈[N ]

piF (z, x̂i)
}

(DRO)

where ∆ξ,N =
{

p ∈ RN
+

∣∣∣ ∑i pi = 1; ||p − 1/N ||22 ≤ 2 ξ
N2

}
. We have earlier stated that x̂i is

output by a regressor, say f ∈ F for some function class F trained using loss L with NT datapoints,
but this implies that x̂i = f(bi) might not exactly same as x∗i = f∗(bi) for some underlying feature
values bi and best function f∗ ∈ F . We assume f∗ is deterministic and has zero Bayes risk.

Let D be the probability distribution from which the feature values bi are sampled. Then, let P ∗ be
the true distribution on X induced by f∗ acting on the feature values that are distributed according to
D (i.e., the pushforward measure). Similarly, P is the distribution on X induced by f acting on the
feature values that are distributed according to D. Thus, the (unknown) samples x∗’s are obtained
from P ∗; hence, the true utility of any decision z is EP∗ [F (z, x)]. We prove an end to end guarantee
about the output decision ẑ∗∗ using x̂i’s, which reveals that ẑ∗∗ is not much worse than the decision
z∗∗ that would be learned if x∗

i ’s would be available and used. The result shows that larger training
data NT helps.

Theorem 1. Let x∗i = f∗(bi) for true function f∗ and let x̂i = f(bi) for the learned empirical
risk minimizer f . Suppose the optimal decision when solving DRO is z∗∗ using x∗

i ’s and ẑ∗∗
using x̂i’s. Also, let F be τ -Lipschitz in x, X be bounded, and a scaled L upper bound || · ||2
(i.e., ||x − x′||2 ≤ max(kL(x, x′), ϵ) for constants k, ϵ) then, the following holds with probability
1 − 2δ − 2δ1: EP∗ [F (̂z∗∗, x)] ≥ EP∗ [F (z∗∗, x)] − C/

√
N − (1 + 2

√
ξ)τϵ − ϵN − ϵNT

, where
ϵK = C1RK(L ◦ F) + C2/

√
K and RK is the Rademacher complexity with K samples and

C,C1, C2 are constants dependent on δ, δ1, ξ, k, τ .

Variance Regularizer: As a large number of samples are needed for a low variance approximation
of the true distribution, another proposed robust version of the SAA [Maurer and Pontil, 2009, Duchi
and Namkoong, 2019] is to optimize the following variance-regularized (VR) objective function

max
z

{
EP̂N

[F (z, x)]− C

√
VarP̂N

(F (z, x))
N

}
. (VR)

The above allows to directly optimize the trade-off between bias and variance. In a fundamental
result, Duchi and Namkoong [2019, Theorem 1] show that, with high probability, problem (VR) is
equivalent to the problem (DRO). Further, Duchi and Namkoong [2019] argue for solving the DRO
version of the problem for concave F (note we are solving a maximization SAA problem) since
concave F results in concavity of minp∈∆ξ,n

∑
i∈[N ] piF (z, x̂i), thus, the overall DRO problem is a

concave maximization problem. In contrast, the objective in (VR) is not concave.

In this paper, our focus is on F that is not concave, thus, the choice of DRO or variance regularized
form is not obvious. For the class of functions F that we analyze, we argue the variance regularized
version is more promising as far as scalability for global optimality is concerned. We work with the
assumption that the variance regularized form is equivalent to DRO, which holds under the mild
condition shown in Equation (9) in Duchi and Namkoong [2019].
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3 Towards a Globally Optimal Solution

In this section, we present results for a general class of non-concave functions F that has a fractional
form with non-linear numerator and denominator and that can be approximated by a linear fractional
form with binary variables. Then, we show three prominent applications of our approach.
Notation: For ease of notation, we use shorthand to denote F (z, x̂i) by Fi and 2 ξ

N2 by ρ.

3.1 General Recipe to Form a MISOCP

We perform a sequence of variable and constraint transformations of (VR), leading to a MISOCP.

Mixed Integer Concave Program: The variance regularized objective in shorthand notation is:

G(z) =
∑
i

Fi

N
−
√
ρ
∑
i

(∑
i′ Fi′

N
− Fi

)2
(1)

We substitute li =
∑

i′ Fi′
N −Fi and q =

∑
i′ Fi′
N for all i ∈ [N ], such that

∑
i li = 0 and Fi = q− li.

The objective in Equation 1 thus becomes q −
√
ρ
∑

i l
2
i which is concave in the variables q and

{li}. We add the new constraints
∑

i li = 0 and Fi = q − li for all i ∈ [N ]. Note that, while the
objective is now concave with above changes, we have pushed the non-convexity into the constraints
Fi − q + li = 0 for all i ∈ [N ] that are added to the optimization.

If Fi can be written (or approximated) as a fraction with affine numerator and denominator, we
can convert the constraint Fi − q + li = 0 into a convex constraint, giving us an overall con-
cave program. The conversion is explained next. Suppose Fi can be written (or approximated) as
aTi v+bi
a′Ti v+b′i

where v represents binary variables after conversion (v completely replaces z and ai, a′
i, bi, b

′
i

are dependent on x̂i’s). Typically, such a linear fractional form is constructed by discretizing
the arguments of the original non-linear functions in the numerator and denominator of F . As-
sume v is of dimension d; typically d will depend on the number of pieces. Define yi = vti
where ti = 1

a′Ti v+b′i
. Then, we can (re)write the fractional form for Fi as Fi = aTi yi + biti.

This yields the linear constraints below with the non-linearity now restricted to yi = vti.

N∑
i=1

li = 0 (2)
aTi yi + biti = q − li ∀i ∈ [N ] (3)

a
′T
i yi + b′iti − 1 = 0 ∀i ∈ [N ] (4)

We handle yi = vti using McCormick relaxation technique [McCormick, 1976]. Typically, Mc-
Cormick relaxation is applied for bilinear terms that are the product of two continuous variables,
in which case, it is an approximation. However, in our case since v is a binary vector variable, the
McCormick relaxation yields an exact reformulation of the bilinear term. For applying McCormick
technique, we need an upper and lower bound of v and ti. Since v a vector of binary variables, we
have lower bound vL = 0 and upper bound vU = 1. Similarly, tLi = 1

(a′+i )T 1+b′i
and tUi = 1

(a′−i )T 1+b′i
(recall superscript + and − indicate positive and negative part of a vector respectively). Further, it is
assumed tUi and tLi exist. Note that these bounds are not variables but fixed constants that depend on
the fixed parameters ai, a′i, bi, b′i, hence these need to be computed just once. Using the upper and
lower bounds of v and ti in McCormick technique we get:

yi − vtUi ≤ 0; ∀i ∈ [N ] (5)

yi − (1ti + vtLi − 1tLi ) ≤ 0; ∀i ∈ [N ] (6)

− yi + (1ti + vtUi − 1tUi ) ≤ 0; ∀i ∈ [N ] (7)

− yi + vtLi ≤ 0; ∀i ∈ [N ] (8)

v ∈ {0, 1}d (9)

tUi ≤ ti ≤ tLi ; ∀i ∈ [N ] (10)

It is straightforward to check the above set of equations is equivalent to yi = vti. With the changes,
we obtain a mixed integer concave program (with all constraints linear). Next, while the above can be
solved using branch and bound with general purpose convex solvers for intermediate problem, we
show that a further transformation to a MISOCP is possible. Specialized SOCP’s solvers provide
much more scalability than a general purpose convex solvers [Bonami and Tramontani, 2015] and
hence partially address the scalability challenge.
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Mixed Integer SOCP: We transform further by introducing another variable s to stand for
√
ρ
∑

i l
2
i .

We use r = (s, q, (li)i∈[N ], v, (ti)i∈[N ], y1, . . . , yN ) to denote all the variables of the optimization.
Thus, the objective becomes the linear function q − s with an additional constraint that√

ρ
∑
i

l2i ≤ s (11)

The above is same as ||Ar||2 ≤ cT r for the constant matrix A (with entries 0 or
√
ρ) and constant

vector c (with 1 in the s component, rest 0’s) that picks the li’s and s respectively. This is a SOCP
form of constraint, and the linear objective q − s makes the problem after this transformation a
MISOCP. In the above reformulation, the only approximation is introduced in writing Fi as a linear
fractional term. One way of such approximation is via discretization. Suppose the fraction function
F (z, x̂i) has a separable (in z) numerator and denominator of the form

∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) where j ranges

over the components of z, and n(zj , x̂i) and d(zj , x̂i) are non-negative and Lipschitz continuous in zj
with Lipschitz constants Cn, Cd respectively. In this case, a general approximation via discretization
is possible with the following guarantee:

Theorem 2. For F (z, x̂i) =
∑

j n(zj ,̂xi)∑
j d(zj ,̂xi) as stated above and approximated as aTi v+bi

a′Ti v+b′i
, an approxima-

tion via discretization of zj with K pieces yields |G(z∗)− G (̂z∗∗)| ≤ O(max{Cn, Cd}/K), where
G(z∗) and G (̂z∗∗) are the optimal objective values with approximation (MISOCP) and without the
approximation respectively.

Next, we show instantiation of the just presented general recipe for three widely studied problems.

3.2 Applications

Notation: In the SSG (facility location) application m resources (facility) are allocated to M targets
(locations). x maps to type θax of adversary, and type θdx of defender in SSG, and type θx of clients of
facility or directly Vx utility for each client type in facility location.

Bayesian Stackelberg Security Game with Quantal Response: A SSG models a Stackelberg
game where a defender moves first to allocate m security resources for protecting M targets. The
randomized allocation is specified by decision variables z of dimension M with the constraints
that

∑M
i=1 zi ≤ m (zi ∈ [0, 1]); zi is interpreted as the protection probability of the target i.

Past works have used the model of a quantal responding adversary [Sinha et al., 2018]]. We
generalize this to a Bayesian game version where there is a continuum of attackers types with the
type specified by a parameter x and an unknown prior distribution over these types. The attacker’s
utility in attacking the target j is a function of the protection probability of target j and type:
h(zj , θ

a
x ). Similarly, the defender’s utility when target j is attacked is: u(zj , θdx ) for some player-

specific parameters θ that depend on x. Following quantal response model (for attacker only), the
attacker of type x attacks a target j with probability exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θa
x ))

and the defender utility

is F (z, x) =
∑

j∈[M] u(zj ,θ
d
x ) exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θa
x ))

. Note that in case the defender’s utilities u(zj , θdx ) take
negative values and the assumptions of Theorem 2 will be violated. This issue can be simply
fixed by choosing α such that α ≥ maxz,x{−u(zj , θdx )} and replacing F (z, x) by F (z, x) + α =∑

j∈[M](u(zj ,θ
d
x )+α) exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θa
x ))

. This will make all the numerators and enumerators of the objective
function non-negative, while keeping the same optimization problem. We also note that quantal
response is also known as multinomial logit model in the discrete choice model literature [Train,
2003]. Our generalization here to multiple types of adversary makes the problem akin to the mixed
logit model in discrete choice models, which is generally considered intractable. As a consequence,
our solution addresses a basic problem in discrete choice models also.

Following our set-up, we observe N samples of the types of attackers x̂1, . . . , x̂N (which gives
θ̂a1 , . . . , θ̂

a
N , θ̂

d
1 , . . . , θ̂

d
N ) and we solve a robust version of the problem. Further, following our general

recipe for solving the robust problem, we piecewise approximate the numerator and denominator of
F using K pieces, where the dimension of v is d = MK. For this approximation, we require two
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additional linear constraints over the constraints in Equations (2-35). The optimization then is:

max
r

q − s (SSG)

subject to Constraints (2-35),
∑

j∈[M ]

∑
k∈[K]

vjk −mK ≤ 0, vj,k ≥ vj,k+1; ∀k ∈ [K]

The overall additive solution bound of O(1/K) can be readily inferred from Theorem 2.

Max-Capture Competitive Facility Location (MC-FLP): In this problem [Mai and Lodi, 2020], a
firm has M locations ([M ]) to set up at most m < M facilities. The aim is to maximize the number
of clients using this firm’s facilities. The competitor(s) already have facilities running at locations
Y ⊂ [M ]. There are different types of clients, where types are denoted by x. The number of clients
of type x is known and equal to sx. However, the distribution over types is unknown. The firm’s
decision of which location to choose is given by binary variables zj ∈ {0, 1} for j ∈ [M ]. A utility
of any client of type x for visiting location j is Vx,j . The choice probability of a client of type x

choosing any of this firm’s location is given as a quantal response model
∑

j∈[M] zje
Vx,j∑

j∈[M] zje
Vx,j+

∑
j∈Y eVx,j .

For shorthand, we abuse notation and use Vx,j to replace eVx,j and Ux,Y to replace
∑

j∈Y e
Vx,j . This

gives F (z, x) =
sx

∑
j∈[M] zjVx,j∑

j∈[M] zjVx,j+Ux,Y
, which is interpreted as the expected number of clients of type x

choosing this firm’s facilities.

Following our set-up, we observe N samples of the types of clients samples
(V̂1,j)j∈[M ], . . . , (V̂N,j)j∈[M ] and we solve a robust version of the problem. Here, we get

Fi =
si

∑
j∈[M] zj V̂i,j∑

j∈[M] zj V̂i,j+Ûi,Y
. Next, following our general recipe for solving the robust problem, we note

that Fi is already in the form aTi v+bi
a′Ti v+b′i

where z plays the role of v. Thus, the dimension of v is M and
no approximation is needed here for Fi; by Theorem 2, we achieve the global optimal solution by
solving MISOCP optimally. The full MISOCP with an additional number of location constraint is:

max
r

q − s subject to Constraints (2-35),
∑

j∈[M ]

vj −m ≤ 0.

Max-Capture Facility Cost Optimization (MC-FCP): In the previous MC-FLP problem, the
budget was specified as a constraint on the number of facilities. However, often a more realistic set-up
is where there is a monetary constraint and the attractiveness of a facility depends on the investment
into the facility. Thus, modifying the previous problem slightly, zj takes a different meaning of
the amount of investment into facility at location j (zero investment indicates no facility). Given
this investment, the attractiveness of a facility j for the client of type x is given as h(zj , θx,j) for
some parameter θ dependent on x and j. And the choice probability of a client of type x choosing

any of this firm’s location is given as a quantal response model
∑

j∈[M] e
h(zj,θx,j)∑

j∈[M] e
h(zj,θx,j)+Ux,Y

. This gives

F (z, x) =
sx

∑
j∈[M] e

h(zj,θx,j)∑
j∈[M] e

h(zj,θx,j)+Ux,Y
, which is interpreted similar to MC-FLP. As stated, we observe

N samples of the types of clients which gives (θ̂1,j)j∈[M ], . . . , (θ̂N,j)j∈[M ] and we solve a robust

version of the problem. Here, we get Fi =
si

∑
j∈[M] e

h(zj,θ̂i,j)∑
j∈[M] e

h(zj,θ̂i,j)+Ûi,Y

. Next, as can be seen from the

form, this is similar to the SSG problem and, following our general recipe, with two additional linear
constraints the optimization formulation is exactly same as Equation (SSG).

4 Scaling up in Number of Samples

The transformation to a MISOCP helps in scalability over a general mixed integer concave program,
but for real world dataset sizes (e.g., 80, 000 data points in our experiments) we need further scalability.
We explore two related techniques towards this end: clustering and stratified sampling. For both
approaches, we obtain a representative subset of S data points (S << N ) and a modified weighted
objective, which converts to a much smaller tractable MISOCP compared to the original problem.
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For solution guarantees, we need mild assumptions: in particular, for the rest of this section we
assume a bounded F , i.e., for some fixed ψ maxz{F (z, x)} −minz{F (z, x)} ≤ ψ2 ∀x̂1, . . . , x̂N

and τ -lipschitzness of F in the argument x: |F (z, x′)− F (z, x)| ≤ τ ||x′ − x||2 ∀z.

Clustering Approach: We cluster the N points x1, ...xN into S groups and for each group s we have
||xi − xs|| ≤ ϵ, where xs is the cluster center of cluster s. We call ϵ the clustering radius. Let Cs be
the number of points in the cluster s, hence

∑
s∈[S] Cs = N . We use a shorthand for the original

objective function of the MISOCP G(z):

∑
i

F (z, x̂i)
N

−
√
ρ
∑
i

(∑
i

F (z, x̂i)
N

− F (z, x̂i)
)2

= M̂ean(F (z, x))−
√
ρV̂ar(F (z, x))

where M̂ean is empirical mean and V̂ar is unnormalized variance. After clustering, we solve for the
same problem but only with cluster centers and appropriate weighing, to get modified objective Ĝ(z):

∑
s

Cs
F (z, xs)
N

−
√
ρ
∑
s

Cs

(∑
s

Cs
F (z, xs)
N

− F (z, xs)
)2

= M̂ean
S
(F (z, x))−

√
ρV̂ar

S
(F (z, x))

The conversion to MISOCP is exactly the same, except for Fi’s being weighted as shown above;
details of conversion are in the appendix. We bound the approximation incurred by the two terms
above (weighted mean and unnormalized weighted variance) separately below

Lemma 1. Under assumptions stated above, we have
∣∣∣M̂ean(F (z, x))− M̂ean

S
(F (z, x))

∣∣∣ ≤ τϵ and∣∣∣∣√ρV̂ar(F (z, x))−
√
ρV̂ar

S
(F (z, x))

∣∣∣∣ ≤ (ψ +
√
2τϵ)

√
2τϵξ
N .

The next result is obtained by using the lemma above

Theorem 3. Given ẑ an optimal solution for maxz Ĝ(z) (clustering approximation) and z∗ optimal

for MISOCP maxz G(z), the following holds: |G (̂z)− G(z∗)| ≤ 2(τϵ+ ψ
√

2τϵξ
N + 2τϵξ√

N
).

Stratified Sampling: Similar in spirit to clustering, the space of x space is divided into T strata.
Each strata has Ct samples, such that

∑
t∈[T ] Ct = N . Next, distinct from the clustering approach,

we draw Nt samples randomly from the tth stratum with a total of
∑

tNt = S samples (note same
number of total samples S as in clustering). For each stratum t we have ||xi − xj || ≤ dt for any
xi, xj in stratum t. We denote a random sample in stratum t as x̂j where j ∈ [Nt] (note superscript is
to distinguish from the subscript used to index all the x̂’s). This approach is the preferred one if the
clustering approach results in cluster centers that are not allowed as parameter values (e.g., cluster
center may be fractional where x’s can only be integral).

Let lt = Ct

Nt
. Use M̂ean

T
(F (z, x)) to stand for 1

N

∑
t∈[T ] lt

∑
j∈[Nt]

F (z, x̂j) and V̂ ar
T
(z, x̂) for∑

t∈[T ] lt
∑

j∈[Nt]

(
M̂ean(F (z, x))− F (z, x̂j)

)
. After stratified sampling our modified weighted

objective Ĝ(z) is M̂ean
T
(F (z, x))−

√
ρV̂ ar

T
(z, x̂). Next, similar to clustering, bounds for M̂ean

T

and V̂ ar
T

but with high probability (Lemma 2,3 in appendix) lead to the main result:

Theorem 4. Let D = maxz,x |F (z, x)| for bounded function F . Under mild assumptions, and ẑ
an optimal solution for maxz Ĝ(z) and z∗ optimal for MISOCP maxz G(z), and N∗ = mintNt, the

following statement holds with probability ≥ 1− 2
∑

t exp
−2

√
N∗ϵ2

τ2d2t −4
∑

t exp
−2

√
N∗ϵ2

4τ2d2tD2 :

|G (̂z)− G(z∗)| ≤ 2ϵ

(N∗)1/4

(
1 + 2

√
ξ

V̂ ar(F (z, x))

)
.

Thus, with increasing samples in all strata, optimality gap approaches 0 with prob. approaching 1.
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Figure 1: (Left) % gap between the utility of decisions using true and learned regressor with varying
training data size NT . (Middle) Objective value achieved using clustering approach as a % of OPT.
(Right) Time to solve each optimization to optimality. Middle and right results are shown for varying
alternatives number M . Underlying parameters are N = 500,m = 1, ξ =1E6.

Table 1: We use clustering/stratified sampling to approximately solve a problem (Approx-OPT). The
table shows the mean percentage: 100×Approx-OPT

OPT and standard deviation over 10 different synthetic
SSG datasets with underlying parameters N = 500,M = 6,m = 1,K = 10.

Method Total no. of samples (S)
8 16 24

Clustering 80.17 ± 2.14 90.74 ± 1.20 94.03 ± 0.57
1 per strata 85.49 ± 1.94 94.59 ± 0.76 99.25 ± 0.39
2 per strata 91.78 ± 1.33 94.55 ± 0.64 99.54 ± 0.25
4 per strata 78.89 ± 1.73 94.86 ± 0.94 98.77 ± 0.39
8 per strata 92.19 ± 0.67 95.85 ± 0.80 99.37 ± 0.25

Uniform sampling (no cluster/strata) 73.92 ± 33.71 78.08 ± 28.62 79.86 ± 26.81

Table 2: Objective values as a % of OPT across various methods repeated over 5 synthetic SSG
datasets with parameters N = 500,M = 10,m = 1 for varying regularization (ξ, on left) and
N = 500,m = 1, ξ = 1E6 for varying no. of targets (M, on right). The no. of clusters/strata is 50.

Method Regularization (ξ) No. of Alternatives (M)

1E3 1E4 1E5 1E6 10 25 50

TT-GAD 99.8±0.1 99.4±0.1 92.7±0.3 82.6±0.4 82.6 ± 0.4 90.2 ± 0.5 92.2 ± 0.3
PGA 98.9±0.1 98.1±0.2 87.7±0.5 49.2±0.9 49.2 ± 0.9 90.9 ± 0.7 93.5 ± 0.4

Clustering 99.9±0.1 99.9± 0.1 99.8±0.1 99.6±0.1 99.6 ± 0.1 99.5 ± 0.2 99.4 ± 0.1
Sampling 100.0±0.0 99.9± 0.1 99.9±0.1 99.8±0.1 99.8 ± 0.1 99.6 ± 0.1 99.5 ± 0.2

5 Experiments

We evaluate our methods on (a) Stackleberg Security Games (SSG) with Quantal Response (synthetic
data), (b) Maximum capture Facility Location Planning (MC-FLP) and (c) Maximum capture
Facility Cost Planning (MC-FCP). Empirically we demonstrate (i) better solution quality of our
method compared to baselines, (ii) practical scalability of our method, and (iii) improvement over
non-robust optimization on those data points that contribute least to the objective (akin to rare classes
in classification) while not sacrificing average performance. We fix K = 10 in approximation via
discretization as we find that objective increase saturates for this K (see Appendix K). We use a 2.1
GHz CPU with 128GB RAM.

Baselines: We use the following two methods as baselines: (i) Projected Gradient Ascent (PGA) on
the formulation (VR), (ii) Two Time Scale Gradient Ascent Descent (TT-GAD) [Lin et al., 2020] on
the formulation (DRO) where the inner minimization is convex and the outer maximization is non-
concave. The numbers reported for our baselines are the best values over 10 random initializations.

5.1 SSG with Quantal Response (Synthetic Data)

We generate attacker and defender utilities following Yang et al. [2012]; a complete description of
data generation and choice of f∗ is in Appendix I. We generate five datasets of size N = 500 each in
order to observe the variance of every result reported in this sub-section; this is also the largest size
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Table 3: Average client choice probabilities for availing the facility across various settings. H denotes
average over those 5% of the clients in test data with the lowest choice probabilities, A denotes
average over all the samples in the test set.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
H A H A H A H A H A H A

ERM 0.069 0.692 0.150 0.719 0.420 0.758 0.175 0.741 0.426 0.769 0.469 0.772
1E2 0.069 0.692 0.417 0.751 0.4170 0.751 0.418 0.763 0.426 0.769 0.469 0.772
1E3 0.093 0.697 0.416 0.747 0.417 0.757 0.418 0.763 0.425 0.768 0.533 0.777
1E4 0.093 0.697 0.416 0.747 0.446 0.750 0.417 0.759 0.531 0.767 0.539 0.769

(A) MC-FCP (B) MC-FLP

Figure 2: The bar plots show the percentage improvement of choice probabilities of our clustering
approach over ERM over cumulative buckets of choice probabilities in ascending order with varying
regularization ξ with fixed budget m=10. The buckets are made by sorting all the clients in the test
set by ascending choice probabilities and then considering cumulative buckets as the first 5%, the
first 10% and so on.

that we could solve exactly optimally within an hour using all the data points. First, we empirically
validate Theorem 1 by plotting in Figure 1(left) the relative gap between the true utility EP∗ [F (·, x)]
of the decisions output by running DRO on the output (x∗)i∈[N ] of the true f∗ (assumed fixed linear
function) versus on (x̂)i∈[N ] from learned f , as the training data size NT for learning f is varied.

Next, we focus on only using (x̂)i∈[N ] and the optimal solution for (x̂)i∈[N ] is named as OPT.
Figure 1 (middle) demonstrates empirically that the solution of the optimization problem on cluster
centers converges to OPT with only a few number of clusters and the time for the optimization shown
in Figure 1 (right) is reasonable. Next, the results in Table 1 show a comparison of the clustering and
stratified sampling approach using the metric of how close they get to OPT. We find stratified sampling
to be better than clustering in almost all cases and a simple uniform sampling (no cluster/strata) fails
to return a solution close to OPT. Table 2 (left) demonstrates that the baselines struggle to reach the
optimal value objective as the magnitude of regularization (ξ) increases. Intuitively, as ξ increases
the variance term (which is highly non-convex) contributes more to the objective and stationary
points reached by the baselines are quite sub-optimal compared to the global optimal. In addition,
with increasing ξ the ambiguity set becomes larger possibly containing more local optimal solutions.
We also study varying the parameter M (m fixed) and Table 2 (right) shows that our approaches
outperform the gradient-based baselines across different values of M .

5.2 MC-FLP and MC-FCP (Real Data)

P&R-NYC Dataset : We use a large and challenging Park-and-ride (P&R) dataset collected in
New York City, which provides utilities for 82341 clients (N ) for 59 park and ride locations (M ),
along with their incumbent utilities for competing facilities [Holguin-Veras et al., 2012]; this data
was directly used for MC-FLP. For MC-FCP we additionally use generated costs, which are not
present in the P&R data. A complete description of data generation is in Appendix I. Both these
problems could not be solved at all with our MISOCP alone (no clustering) as the optimization did
not finish in 24 hours. Hence, we use our clustering approach with 50 clusters.

We compare to a baseline solution of the non-robust empirical risk minimization (ERM) (also called
the sample average approximation or SAA). We split the data (randomly) into training and test (80:20)
and then obtain the decision ẑ using the training data. Then, we obtain the choice probability (recall
this as probability of a client choosing any of the firm’s facility) for every client in the test data for the
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decision ẑ. We compare the performance of ERM and our method for clients (in test set) bucketed by
choice probabilities in Figure 2 and Table 3. The buckets are made by sorting all the clients in the test
set by ascending choice probabilities and then considering cumulative buckets as the first 5%, the first
10% and so on. In Fig. 2, we show that the average percentage improvement in choice probabilities
of our robust approach over ERM is considerably higher for clients with lower choice probability
(these clients contribute least to the objective) and the over all average over all clients (rightmost on
x-axis) is slightly better than ERM. In Table 3, note the significantly increased probabilities for low
choice probability clients (low choice prob. using ẑ) without compromising the average performance
across all clients for varying M . Additional results are in Appendix J.

6 Conclusion

We presented an approach for a distributionally robust solution to a class of non-convex sum of
fractional solutions, with guaranteed near global optimality. We presented application to three
prominent practical problems and the connection to discrete choice models opens up possibilities of
applying our approach to even more problems. Further investigation on how to cluster or stratify more
effectively (than k-means) to achieve even more scalability is a possible future research direction.
Further, we used a χ2-divergence based ambiguity set, which only covers nearby distributions with
same support as the given data samples; exploring Wasserstein ambiguity sets is a possible future
research direction. We hope that our work inspires tackling robust formulation of more classes of
non-convex problems, with guarantees for global optimality.

Acknowledgement

This research/project is supported by the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG2-RP-2020-017).

References
Felipe Aros-Vera, Vladimir Marianov, and John E Mitchell. p-hub approach for the optimal park-

and-ride facility location problem. European Journal of Operational Research, 226(2):277–285,
2013.

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341–357, 2013.

Stefano Benati and Pierre Hansen. The maximum capture problem with random utilities: Problem
formulation and algorithms. European Journal of Operational Research, 143(3), 2002.

Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via optimal transport.
Mathematics of Operations Research, 44(2):565–600, 2019.

Pierre Bonami and A Tramontani. Recent improvement to misocp in cplex. INFORMS, Philadelphia,
PA, USA, Tech. Rep, 2015.

Tien Thanh Dam, Thuy Anh Ta, and Tien Mai. Submodularity and local search approaches for
maximum capture problems under generalized extreme value models. European Journal of
Operational Research, 2021. ISSN 0377-2217.

John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. The
Journal of Machine Learning Research, 20(1):2450–2504, 2019.

John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization: A
generalized empirical likelihood approach. Mathematics of Operations Research, 2021.

Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
using the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical
Programming, 171(1):115–166, 2018.

10



Fei Fang, Thanh H Nguyen, Rob Pickles, Wai Y Lam, Gopalasamy R Clements, Bo An, Amandeep
Singh, Brian C Schwedock, Milin Tambe, and Andrew Lemieux. PAWS—A deployed game-
theoretic application to combat poaching. AI Magazine, 38(1), 2017.

Alexandre S Freire, Eduardo Moreno, and Wilfredo F Yushimito. A branch-and-bound algorithm for
the maximum capture problem with random utilities. European journal of operational research,
252(1), 2016.

Nika Haghtalab, Fei Fang, Thanh H. Nguyen, Arunesh Sinha, Ariel D. Procaccia, and Milind Tambe.
Three strategies to success: Learning adversary models in security games. In 25th International
Joint Conference on Artificial Intelligence (IJCAI), 2016.

Jose Holguin-Veras, Jack Reilly, Felipe Aros-Vera, et al. New york city park and ride study. Technical
report, University Transportation Research Center, 2012.

Henry Lam. Robust sensitivity analysis for stochastic systems. Mathematics of Operations Research,
41(4):1248–1275, 2016.

Hongmin Li, Scott Webster, Nicholas Mason, and Karl Kempf. Product-line pricing under discrete
mixed multinomial logit demand: winner—2017 m&som practice-based research competition.
Manufacturing & Service Operations Management, 21(1):14–28, 2019.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093. PMLR, 2020.

Tien Mai and Andrea Lodi. A multicut outer-approximation approach for competitive facility location
under random utilities. European Journal of Operational Research, 284(3), 2020.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance penaliza-
tion. In COLT, 2009.

Garth P McCormick. Computability of global solutions to factorable nonconvex programs: Part
i—convex underestimating problems. Mathematical programming, 10(1):147–175, 1976.

Georg Pflug and David Wozabal. Ambiguity in portfolio selection. Quantitative Finance, 7(4):
435–442, 2007.

Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, and Tianbao Yang. An online method for a class of
distributionally robust optimization with non-convex objectives. Advances in Neural Information
Processing Systems, 34, 2021.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

Henry WJ Reeve and Ata Kaban. Optimistic bounds for multi-output prediction. In 37th International
Conference on Machine Learning (ICML 2020), 2020.

Siegfried Schaible. Fractional programming. In Handbook of global optimization, pages 495–608.
Springer, 1995.

Soroosh Shafieezadeh-Abadeh, Peyman Mohajerin Esfahani, and Daniel Kuhn. Distributionally
robust logistic regression. arXiv preprint arXiv:1509.09259, 2015.

Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe. Stackelberg security
games: Looking beyond a decade of success. In 27th International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust submodular maximization.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 506–516.
PMLR, 2019.

Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned. Cambridge
university press, 2011.

Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2003.

11



Haifeng Xu. The mysteries of security games: Equilibrium computation becomes combinatorial
algorithm design. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 497–514, 2016.

Yan Yan, Yi Xu, Lijun Zhang, Wang Xiaoyu, and Tianbao Yang. Stochastic optimization for
non-convex inf-projection problems. In International Conference on Machine Learning, pages
10660–10669. PMLR, 2020.

Rong Yang, Fernando Ordonez, and Milind Tambe. Computing optimal strategy against quantal
response in security games. In AAMAS, pages 847–854, 2012.

Rong Yang, Benjamin J Ford, Milind Tambe, and Andrew Lemieux. Adaptive resource allocation for
wildlife protection against illegal poachers. In Aamas, pages 453–460, 2014.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] It is public use
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12


