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Abstract

Safety in goal directed Reinforcement Learning (RL) settings
has typically been handled through constraints over trajecto-
ries and have demonstrated good performance in primarily
short horizon tasks. In this paper, we are specifically inter-
ested in the problem of solving temporally extended decision
making problems such as robots cleaning different areas in a
house while avoiding slippery and unsafe areas (e.g., stairs)
and retaining enough charge to move to a charging dock; in
the presence of complex safety constraints. Our key contri-
bution is a (safety) Constrained Search with Hierarchical Re-
inforcement Learning (CoSHRL) mechanism that combines
an upper level constrained search agent (which computes a
reward maximizing policy from a given start to a far away
goal state while satisfying cost constraints) with a low-level
goal conditioned RL agent (which estimates cost and reward
values to move between nearby states). A major advantage of
CoSHRL is that it can handle constraints on the cost value
distribution (e.g., on Conditional Value at Risk, CVaR) and
can adjust to flexible constraint thresholds without retrain-
ing. We perform extensive experiments with different types of
safety constraints to demonstrate the utility of our approach
over leading approaches in constrained and hierarchical RL.

1 Introduction

Reinforcement Learning (RL) is a framework to solve de-
cision learning problems in environments that have an un-
derlying (Partially Observable) Markov Decision Problem,
(PO-)MDP. Deep Reinforcement Learning (Francois-Lavet
et al. 2018; Hernandez-Leal, Kartal, and Taylor 2019) ap-
proaches have been shown to solve large and complex de-
cision making problems. For RL agents to be relevant in
the day-to-day activities of humans, they need to handle a
wide variety of temporally extended tasks while being safe.
A few examples of such multi-level tasks are: (a) planning
and searching for valuable targets by robots in challenging
terrains (e.g., disaster areas) while navigating safely and pre-
serving battery to reach a safe spot; (b) for autonomous elec-
tric vehicles to travel long distances in minimum time, they
need to optimize the position of recharge locations along the
way to ensure the vehicle is not left stranded; (c) cleaning
robots to clean a house while avoiding slippery and unsafe
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areas (e.g., stairs) and retaining enough charge to move to
a charging dock. The following key challenge needs to be
addressed in the above mentioned problems of interest:

e Computing an execution policy that satisfies safety con-
straints (in expectation or in a confidence bounded way)
for temporally extended decision making problems in
the presence of uncertainty.

Existing research in temporally extended decision making
problem has focused on hierarchical RL methods (Nachum
et al. 2018; Zhang et al. 2020; Kim, Seo, and Shin 2021;
Levy et al. 2017). These approaches successfully solve long
horizon tasks mainly in the widely applicable setting of goal
conditioned RL (Liu, Zhu, and Zhang 2022), but they are un-
able to deal with safety constraints. On the other hand, most
existing research in handling trajectory based safety con-
straints has focused on constrained RL approaches (Simdo,
Jansen, and Spaan 2021; Gattami, Bai, and Aggarwal 2021),
where constraints are enforced on expected cost. A recent
method that has considered percentile/confidence based con-
straints is WCSAC (Yang et al. 2021). Unfortunately, these
constrained RL approaches are typically only able to solve
short horizon problems where the goal is not too far away.
We address the need to bring together these two threads
of research on hierarchical RL and constrained RL, which
have mostly progressed independently of each other (Roza,
Roscher, and Giinnemann 2023). To that end, we propose
a new Constrained Search with Hierarchical Reinforcement
Learning (CoSHRL) approach, where there is a hierarchy of
decision models: (a) The lower level employs goal condi-
tioned distributional RL to learn reward and cost distribu-
tions to move between two local states that are near to each
other. (b) The upper level is a constrained search mecha-
nism that builds on Informed RRT* (Gammell, Srinivasa,
and Barfoot 2014) to identify the best waypoints to get
from a given start state to a “far” away goal state. This is
achieved while ensuring overall expected or percentile cost
constraints (representative of robust safety measures) are en-
forced.

Contributions: Our key contributions are: (1) we provide a
scalable constrained search approach suited for long hori-
zon tasks within a hierarchical RL set-up, (2) we are able to
handle rich percentile constraints on cost distribution, (3) the
design of enforcing the constraints at the upper-level search



allows fast recomputation of policies in case the constraint
threshold or start/goal states change, and (4) mathematical
guarantee for our constrained search method. Finally, we
provide an extensive empirical comparison of CoSHRL to
leading approaches in hierarchical and constrained RL.

Related Work: Constrained RL uses the Constrained MDP
(CMDP) to maximize a reward function subject to expected
cost constraints (Satija, Amortila, and Pineau 2020; Panka-
yaraj and Varakantham 2023; Achiam et al. 2017; Gattami,
Bai, and Aggarwal 2021; Tessler, Mankowitz, and Man-
nor 2018; Liang, Que, and Modiano 2018; Chow et al.
2018; Simao, Jansen, and Spaan 2021; Stooke, Achiam, and
Abbeel 2020; Liu et al. 2022; Yu, Xu, and Zhang 2022;
Zhang, Vuong, and Ross 2020). WCSAC (Yang et al. 2021)
extends Soft Actor-Critic and considers a certain level of
CVaR of the cost distribution as a safety measure; (Chow
et al. 2017) use Lagrangian approach for the same. (Sootla
et al. 2022) prevent only worst case cost (no CVaR or ex-
pected) violation by tracking the cost budget in the state,
which further does not allow for multiple constraints. As far
as we know and from benchmarking work (Ray, Achiam,
and Amodei 2019), there is no constrained RL designed for
long-horizon tasks, and even for short-horizon all current ap-
proaches need retraining if the constraint threshold changes.
Hierarchical Reinforcement Learning (HRL) addresses
the problem of sequential decision making at multiple levels
of abstraction (Kulkarni et al. 2016; Dietterich 2000). The
problem could be formulated with the framework of MDP
and semi-MDP (SMDP) (Sutton, Precup, and Singh 1999).
Utilizing off-policy RL algorithms, a number of recent
methods such as HIRO (Nachum et al. 2018), HRAC (Zhang
et al. 2020), and HIGL (Kim, Seo, and Shin 2021) propose
a hierarchy where both lower and upper level are RL learn-
ers and the higher level specifies sub-goals (Kaelbling 1993)
for the lower level. However, it is hard to add safety con-
straints to such HRL with RL at both levels because to en-
force constraints the higher level policy must generate con-
straint thresholds for the lower-level agent while ensuring
the budget used by multiple invocations of the lower-level
agent does not exceed the total cost budget. Also, the lower-
level policy should be able to maximize reward for any given
cost threshold in the different invocations by the upper level.
However, both these tasks are not realizable with the existing
results in constrained RL. Options or skills learning coupled
with a higher level policy of choosing options is another ap-
proach (Eysenbach et al. 2018; Kim, Ahn, and Bengio 2019)
in HRL. CoSHRL can be viewed as learning primitive skills
of reaching local goals, and the simplicity of this task as well
as of the search makes our approach scalable and flexible.
Closer to our method, SORB (Eysenbach, Salakhutdinov,
and Levine 2019) employs a graph-based path-planning (Di-
jkstra’s algorithm) at the higher level and distributional RL
at low level, where the continuous state is discretized to yield
a massive graph. SORB achieves better success rate in com-
plex maze environments compared to other HRL techniques
but cannot enforce constraint and has high computational
cost due to a large graph. We present a thorough comparison
of our ConstrainedRRT* to SORB’s planner in Section 2.
PALMER (Beker, Mohammadi, and Zamir 2022) employs

RRT* for the high level, but instead of distributional RL at
the low-level it uses an offline RL like approach, requiring
a large pre-collected dataset fully covering the environment;
importantly, PALMER also cannot enforce constraints.

Logic based compositional RL (Jothimurugan et al. 2021;
Neary et al. 2022) shares similarities with our approach in
terms of combining a high-level planner with a low-level RL
agent. However, works in compositional RL have a binary
logical specification of success, whereas we are in a quanti-
tative setting of constrained MDP with rewards and cost con-
straints (and novel CVaR constraints). Also, our utilization
of the RRT* planner is quite different from the reachability
planner used in these works.

Problem Formulation

We have an agent interacting with an environment in a
Markov Decision Process (MDP) setting. The agent ob-
serves its current state s € S, where S C R is a continuous
state space. The initial state sp for each episode is sampled
according to a specified distribution and the agent seeks to
reach goal state sg. The agent’s action space can be con-
tinuous (¢ C R™) or discrete. The episode terminates when
the agent reaches the goal, or after 1" steps, whichever oc-
curs first. The agent earns immediate reward (s, a) and
separately also incurs immediate cost ¢! (s?, a’) when acting
in time step t. V7 (s, sg) and V. (so, s¢) are the cumula-
tive undiscounted expected reward and cost respectively for
reaching goal state s from origin state so following policy
7. The typical optimization in constrained RL (Achiam et al.
2017) is:

max V7" (so,sq) st. VI(so,sq) <K (1)

where the value functions are given as V7 (sp,sqg) =
E[Zio ri(st,a)|sT = sa, s = so] and V7 (s,, ) =
E[Ztho (st a')|sT = s, s” = 50| with the expectation
taken over policy and environment.

However, in the above, the constraint on the expected
cost value is not always suitable to represent constraints on
safety. E.g., to ensure that an autonomous electric vehicle is
not stranded on a highway, we need a robust constraint that
ensures the chance of that happening is low, which cannot be
enforced by expected cost constraint. Therefore, we consider
a cost constraint where we require that the CVaR (Rockafel-
lar, Uryasev et al. 2000) of the cost distribution (given by the
bold font random variable V7 (s, s¢) is less than a thresh-
old. We skip writing sp, s when implied. Intuitively, Value
at Risk, VaR,, represents the minimum value for which the
chance of violating the constraint (i.e., V7 > k) is less than
« specified as

VaRy(VI)=inf{k | Pr(V] > k) < a}
Conditional VaR, CVaR, intuitively refers to the ex-
pectation of values that are more than the VaR,, i.e.,
CVaR,(VI)=E[VT | VT > VaR,(VT)]. With this ro-
bust variant of the cost constraint (also known as percentile
constraint), the problem that we solve for any given « is

max, V™ (so,s¢) s.t. CVaR,(VI)<K (2
Note that =1 is risk neutral, i.e., CVaR; (VT)=E[VT]| =
V., and a close to 0 is completely risk averse.
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Figure 1: Overview of CoSHRL. Step 1: Train a local goal-conditioned RL agent using multiple randomly selected (o, g) (o is
start, g is goal) pairs in a constrained environment (top part). The red square indicates a high-cost region. The learning is local
and hence the goal will be unreachable if it’s not “near” to the start. In this step, the local value function V' and the cost function
V. are learned. Step 2: Generate waypoints guided by V" and V. using the proposed ConstrainedRRT* algorithm (i) The search
samples state C, and O is not within the dashed circle of “near” states. Although both A and B are within the circle, the path
from O to C via B is better as V' (O,B) +V (B,C) < V(0,A) +V(A,C) using low-level agent’s V function. So, edge (B, C) is
added to the tree. (ii) For new sample E, E is “near” from C and D, but the edge (C, E) is not valid because of cost constraint
CVaR4(V.(0,B) +V.B,C)+V.(C,E)) > K. (iii) A path (O, B, C, D, E, L, G) within the cost constraint is found. (iv) As
the number of sampled states increases, a better path (O, B, I, D, E, L, G) is found. Step 3: Leveraging the waypoints from step

2, the pre-trained goal-conditioned RL agent completes the task.

2 Approach

Our approach, referred to as CoSHRL, solves the problem
in Equation 2. As shown in Figure 1, CoSHRL employs
a lower-level distributional RL agent and an upper-level
search agent. First, the goal-conditioned (Kaelbling 1993)
off-policy distributional RL agent learns local distribution
of reward and cost between states that are “near” to each
other. Then, the upper-level agent is constructed using a con-
strained search algorithm by utilizing the reward and cost
distributions. Finally, through its interactions with the en-
vironment, the lower-level agent reaches the far away goal
guided by the waypoints produced by the constrained search.

Lower Level Agent: Distributional RL (Bellemare, Dab-
ney, and Rowland 2023) is a popular technique that enables
learning distribution of value functions instead of just ex-
pected values. Distributional RL learns a policy 7 and main-
tains a network representing the distribution of Q; we show
how to derive V, V. from the learned policy 7.

Why distributional RL? For rewards, we need to estimate
just the expected V™ (s, '), but it is known from the liter-
ature that learning the distribution of V™ and then calcu-
lating expected value leads to better estimates (Eysenbach,
Salakhutdinov, and Levine 2019; Beker, Mohammadi, and
Zamir 2022). For completeness, we provide experimental
evidence of this phenomenon in Appendix. For enforcing
percentile based cost constraint, we need to estimate the dis-
tribution of cost V. for the 7 learned by lower-level agent.
This is only possible with the use of distributional RL.

Representation: In distributional RL for discrete actions,
the distribution of Q is assumed to be over N discrete
values. The distribution of a goal conditioned Q is repre-

sented by QY (neural network parameterized by #), which
takes as input s, s’, a (s’ is local goal) and outputs a vector
[p1,...,pN] Where p; is the probability of expected reward
value taking the i*" discrete value. For completeness, the
standard training of distributional RL is described in the Ap-
pendix, yielding a trained policy 7. For training, we choose
nearby start and end states at random throughout the state
space, relying on the generalizability of neural networks to
obtain good estimates for nearby start and goal in the whole
state space.

Next, for discrete actions, we represent the distribution
of value V7 as a neural network V™, which again outputs
a probability vector. For simplicity, we do not include the
learned policy 7 (which will not change) in the notation
for V. The fixed learned 7 allows us to estimate V* di-
rectly by minimizing the KL divergence between a target
Vi(s,s") = Q%(s,s’,a),a~7(|s,s") and the current V',
i.e., min,, D1 (V?||V™). We optimize the above by storing
experiences sampled according to 7 in a replay buffer and
sampling mini-batches to minimize the loss above, analo-
gous to supervised learning. Once the vector of probabilities
V™ is obtained, we can obtain the expected V' by calculating
the expectation.

For continuous actions, we can directly learn the distribu-
tion of V, represented by a network V* using the same vec-
tor of probability representation of the distribution of value
as used above for Q.

For problems in path search with no movement uncer-
tainty, reward r is set to —1 for each step such that the
learned expected negated reward value function —V (s, s’)
reflects the estimated length of the shortest path (avoiding



impenetrable obstacles) from s to s’ as done in (Kaelbling
1993; Eysenbach, Salakhutdinov, and Levine 2019). In par-
ticular, we assume that —V is learned accurately and prove
the following result:

Lemma 1. Given S C R%, assuming —V gives the obstacle
avoiding shortest path length, —V is a distance metric.

Next, for costs, we note that we performed the reward es-
timation without considering costs since in our approach the
lower-level agent does not enforce constraints. However, the
lower level agent does estimate the local costs as distribu-
tional Q values as a QY network in the discrete action case
or distributional V values as a V¥ network in the contin-
uous action case. Then, in the discrete action case, simi-
lar to above learning of V', the fixed learned policy 7 al-
lows us to estimate the vector of probability V¥ function
directly by minimizing the KL divergence between a tar-
get VI = QYs, s, a),a ~ #(-|s,s") and the current V*:
min,, D (VE||V2). In the continuous action case, the net-
work V* is already learned directly (details in Appendix).

Upper Level Agent: Once the lower-level RL training is
complete, we obtain a local goal-conditioned value func-
tion for any origin and local goal state that are near to each
other. In this section, we use the learned expected value
V and cost random variable V. (removing superscripts for
notation ease). First, we formulate the upper-level optimal
constrained search problem. The RRT* search works in a
continuous space S C R?. A path is a continuous function
o : [0,1] — R4 with the start point as o(0) and end as o (1).
In practice, a path is represented by a discrete number of
states {0 () }iepn) for 0 =ao <21 < ... <xp_1 <zp =1
and some positive integer n (n can be different for differ-
ent paths). A collision-free path is one that has no overlap
with fixed obstacles. The set of all paths is 3, and the set
of obstacle free paths is X ¢,.c.. A length of path is defined
85 SUD,.0—,c 1 3oy d(Ty,_,,74,) for given underlying
distance d. The RRT* search (or the Informed version) finds
the shortest path from the given start and end point.

Given the discrete representation, for our CoSHRL the
path traversed between o(x;) and o (z;41) is determined by
the lower-level agent’s policy. Every path o € X provides a
reward R, and incurs a cost C,,. We define the reward for
segment (o(x;),0(x;41)) of a path as V(o (x;), 0(xi41)),
where V' is the local goal-conditioned value function learned
by the lower-level agent. Similarly, the cost incurred for seg-
ment (o(2;),0(xi4+1)) is Ve(o (), o(x;41)). Thus,

Rg = iV(U(Zi),U(LL‘i+1)) (3)
=0
Co =) Ve(o(x:),0(xit1)) “4)
=0

In CoSHRL, the constrained search problem is to find the
optimal path, o* (€ argmax,cy R,) from sp to sg sub-
ject to a cost threshold, i.e., CVaR,(Cy+) < K. As =V
is the shortest distance considering obstacles (see the text
before Lemma 1), the above optimization essentially finds
the shortest path measured in distance —V from sp to sg
avoiding all obstacles and within the cost constraint K.

Algorithm 1: ConstrainedRRT* (s,, s¢, V, V., K)

1V {55}, E+ 0, Sso1n < 0, T =V, &)
2 for iteration=1 ... N do
3 L T = Extend_node(s,, s¢, V, Ve, K, T, Ssoin)

4 return best solution in Sgu;,

def Extend_node (s, 80, V, Ve, K, T, Ssoin)

5 Sample $,,¢,, Within min(r grr.«,n) from its

nearest node in 7 as in Informed RRT*

6 Shear < Find all nodes in 7" within

min(rgrrs,n) from s,eq,

7 Find 8,5, € argming{—R(s) =V (s, Spew) | S€
Sn,earvvahdfedge(Tv 8, Snew, Ve, K)}

V VU {Snewt € +— EU{(Smin, Snew) }

Scand = {SE Snear ‘ - R(Snew)_ V(Sneun S) <
—R(s), Valid_edge(T, speu 5, Ve, K )}

10 for Vs € S.qnq do

11 L Sparent <Parent(s), & < E\{(sparent; s)},

V< VU {Snew}, € < EU{(Snew, )}

12 If sy,ew 1S near the goal sg, then form o by
tracking parents of S, and Ssopn < SsonU{o}

Our approach has immediate advantages over the state-
of-the-art SORB (Eysenbach, Salakhutdinov, and Levine
2019), which also employs an upper level planner and lower
level RL. SORB constructs a complete graph and then com-
putes the shortest path using Dijkstra’s algorithm. However,
SORB has fundamental limitations: (1) The graph is built
from the replay buffer of explored nodes. This can result in
bad distribution of nodes in the state space (without consid-
ering start, goal, or obstacles). (2) The coarse discretization
can result in a non-optimal path between the start and goal
state (Karaman and Frazzoli 2011). (3) Construction of com-
plete graph yields O(N?) complexity for Dijkstra’s algo-
rithm with N nodes (compared to N log N for our search).

Thus, an online search method that samples and grows
a tree from the given start to the goal state while avoid-
ing extending into obstacles is more suited as the upper-
level search. Hence we provide Constrained-RRT*, which
builds on Informed-RRT* (Gammell, Srinivasa, and Barfoot
2014) to handle constraints. Informed-RRT* builds upon
RRT#* (Karaman and Frazzoli 2011), which works by con-
structing a tree whose root is the start state and iteratively
growing the tree by randomly sampling new points as nodes
till the tree reaches the goal. In Informed RRT*, as an in-
formed heuristic, the sampling is restricted to a specially
constructed ellipsoid. However, both Informed-RRT* and
RRT* do not take constraints into account.

Algorithm Description: We propose Constrained RRT* (Al-
gorithm 1), which builds on Informed RRT* to handle the
cost constraint. The pseudocode is provided in Algorithm 1.
We search for the optimal path ¢* by incrementally build-
ing a tree 7 in the state space S. The tree, 7 consists of a
set of nodes, V (C S), and edges £ (C S x 5). In the sub-
routine Extend_node, a candidate state s,,.,, is chosen (line
5) to be added to the tree T by a sampling process that is the
same as in Informed RRT* (see Appendix for details of sam-



Algorithm 2: Valid_edge (7, s,s’, V¢, K)
1 result < V(s,s")

2 while s.parent do

3 result < result + V.(s.parent, s)
4 § < s.parent

5 if CVaR,(result) < K then
6 | return True

7 return False

pling). The hyper-parameter n accounts for the fact that our
distance estimates are precise only locally (see Appendix for
hyperparameter settings).

The rewiring radius, rrpr. = ~Yrrr«(logn/n)t/e,
where n is the current number of nodes sampled, is de-
scribed in (Karaman and Frazzoli 2011). The node S.,in
(line 7) that results in the shortest path (highest reward) to
Snew among the nearby nodes S),¢4; (line 6) is connected to
Snew 1N line 8, if the edge is valid.

Here, we take a detour to explain how we determine the
validity of edges. An edge is valid if and only if adding it
does not result in a (partial) path that violates the cost con-
straint. The key insight is that this validity can be determined
by computing the convolution of the distributions associated
with the (partial) path and the current V.. By providing the
definition of Valid_edge (T, s, s’, V., K) in Algorithm 2 and
doing the Valid_edge checks in the Extend_node subroutine,
we ensure that any path output by the overall algorithm will
satisfy the cost constraints. In the pseudocode of Valid_edge,
V. represents a random variable (and so does result). Then,
the addition in line 3 of Valid_edge is a convolution opera-
tion (recall that the distribution of a sum X + Y of two ran-
dom variables X, Y is found by a convolution (Ross 2014)).

Coming back to Extend_node, we explore further the pos-
sible edges to be added to the tree. In particular, in line
9 (1) the edge is created only if it is valid and (2) new
edges are created from s,,¢,, to vertices in Sy,cq;, if the path
through s, has lower distance (higher reward) than the
path through the current parent; in this case, the edge link-
ing the vertex to its current parent is deleted, to maintain the
tree structure. An example search run is shown in Figure 1.

Theoretical Results: The RRT* algorithm (Karaman and
Frazzoli 2011) satisfies two properties: probabilistic com-
pleteness and asymptotic optimality. Intuitively, probabilis-
tic completeness says that as number of samples n — oo,
RRT* finds a feasible path if it exists and asymptotic opti-
mality says that as n — oo, RRT* finds the optimal path with
the highest reward. Unsurprisingly, asymptotic optimality
implies probabilistic completeness. Our key contribution is
proving asymptotic optimality of ConstrainedRRT*, which
requires complicated analysis because of constraints.

Background: We summarize many definitions from Kara-
man and Frazzoli (2011). For detailed definition statements,
we request the reader to peruse the referred paper. Karaman
and Frazzoli (2011) define addition and multiplication oper-
ations that make the set of paths ¥ a vector space. Further,
they define a norm ||o|| gy on this vector space (please re-

fer to page 22 of (Karaman and Frazzoli 2011)). The dis-
tance induced by the BV norm allows for defining limits of
a sequence of path, i.e., lim, . 0,. A solution path ¢* is
called robustly optimal if under the metric induced by the
BV norm for any sequence of collision-free paths o, if
lim,, 400 0, = 0™ then lim,, oo Ry, = Ry+. A path is said
to have strong & clearance if it is not within § distance of
any obstacle. A path o has weak J clearance if there exists
a sequence of paths with strong clearance converging to o.
For any path finding algorithm ALG, let Y,A% be the ran-
dom variable corresponding to the reward of the max-reward
solution returned at the end of iteration n.

Definition 1 (Asymptotic optimality (Karaman and Frazzoli
2011)). An algorithm ALG is asymptotically optimal if, for
any path search problem that admits a robustly optimal solu-
tion with finite reward R*, P({limsup,, ;214 = R*})=1.

Theoretical Results for Constraints: In this paper, due to
the presence of constraints, we have to modify definitions.
For instance, robustly optimal definition has to account for
costs, i.e., the solution path o* is called robustly optimal with
constraints if under the metric induced by the BV norm for
any sequence of collision-free paths o,, if lim, o, 0, = o*
then lim,_,o R,, = R,+ and if lim,_, 05, = o* then
limy, o0 Cy, = Cy~. Next, the definition of weak J clear-
ance of optimal path ¢* is extended to assume that there
exists a sequence of strong ¢ clearance paths with total cost
< K + € when the path o* has cost < K for any small
€ > 0. Intuitively, this means that if the optimal path has
cost at most K then nearby strong § clearance paths con-
verging to the optimal path are also cost bounded closely by
K while allowing e extra cost for possibly slightly longer
paths. We redefine Definition 1 with the cost constraint. Let
Z;:‘LG be the random variable corresponding to the cost of
the max-reward solution included in the graph returned by
ALG at the end of iteration n (n samples). Then, we define:

Definition 2 (Asymptotic optimality with constraints). An
algorithm ALG is asymptotically optimal with constraints if,
for any path search problem that admits a robustly optimal
solution with finite cost constraints K and with finite reward
R*, P({limsup,, Y,A¢ = R*}) = 1 and Z'L¢ < K.

We justify this definition as follows: since ALG will stop
in finite n, we require that the output of ALG is always
within the cost threshold K for any n at which the algo-
rithm stops. We prove that our change (Valid_Edge check)
preserves asymptotic optimality with constraints.

Theorem 1. Let d be the dimension of the space S, (1(Sfree)
denotes the Lebesgue measure (i.e., volume) of the obstacle-
free space, and T4 be the volume of the unit Euclidean norm
ball in the d-dimensional space. The Constrained RRT*
in Algorithm 1 preserves asymptotic optimality with con-

straints for Yyrrr+ > (2(1 + 1/d))1/d(w)l/d'

=z =

The proof of RRT* involves constructing a random graph
via a marked point process that is shown as equivalent to
the RRT* algorithm. In the full proof in Appendix. we in-
corporate cost constraints in the construction of the random
graph and show its equivalence to ConstrainedRRT*. Then,
the analysis is done for this constructed random graph. The
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analysis involves (1) constructing a sequence of paths o,
with strong §,, clearance converging to the optimal path o*
within cost constraint, (2) constructing a covering of the path
o, with a sequence of norm balls with radius d,,/4; we use
a special value for 4,, to account for cost constraints. It is
shown that with large enough n and our special choice of
0n, the tree in ConstrainedRRT* will have a path satisfying
cost constraints through these balls and will converge to o*.

3 Experiments

We evaluate our method on two complex point maze envi-
ronments and a novel image-based ViZDoom environment
which have been used as a benchmark in RL navigation
tasks (Zhang et al. 2020; Nachum et al. 2018; Beker, Mo-
hammadi, and Zamir 2022). These maps include obstacles
(impenetrable) and hazards (high cost but penetrable). We
compare against SAC-Lagrangian (SAC-lag) (Yang et al.
2021; Stooke, Achiam, and Abbeel 2020), WCSAC (Yang
et al. 2021), SORB (Eysenbach, Salakhutdinov, and Levine
2019), and Goal-conditioned RL (GRL) (Kaelbling 1993).
SORB and GRL are not designed to enforce constraints, so
they can get higher rewards but suffer from constraint vio-
lations. Hyperparameter settings and additional results on
other environments are in Appendix.
2D Navigation with Obstacles: The first environment is
point maze environment of Figure 2a (left), which has wall
obstacles, but no hazards (thus, no cost constraints). The
start point is randomly set in the environment while the goal
is set 69 away from the start where v is the difficulty level.
As the immediate reward r(s,a) = —1, the agent needs to
reach the goal using the shortest path that avoids the walls.
We compare CoSHRL with goal-conditioned RL and
SORB at different difficulty levels. For a fair comparison,
both the number of nodes for SORB and the number of it-
erations for our method are set as 1000. For each experi-
ment, we ran 100 trials with different seeds. We compare
(a) the percentage of times the agent reaches the goal; and
(b) the negated reward (i.e., the path length). In Figure 2b,
we observe that the success rate of CoSHRL is 100% and
it outperforms SORB with a larger margin as the difficulty
level increases. In Figure 2c, we show all trials’ negated re-
ward (lower is better) for GRL, SORB, and CoSHRL. The
difficulty level v decides the optimal distance between start
and goal, e.g., when v = 0.3, the optimal distance is set at
69 x 0.3 = 21; we observed that the baseline approaches fre-
quently provided very circuitous paths much longer than the

optimal path, e.g., SORB and GRL often provide circuitous
paths with length exceeding 40 for v = 0.3, so we cut them
off at 40 for v = 0.3. We cut all trajectories off for baselines
(thereby providing advantage to baselines) at 40, 60, 80, 100
for difficulty levels 0.3, 0.5,0.7, 0.9 respectively.

Yet, we observe that not only the average negated reward
(path length) but also the upper bound and lower bound out-
perform SORB and GRL at different difficulty levels.

2D Navigation with Obstacles and Hazards: In this part,
we evaluate our method in the point maze environment of
Figure 2a (right), where there are two hazards set in the top
left room and bottom left room. The agent starts randomly in
the bottom left room and the goal is randomly set in the top
right room. The trajectory length will be longer if the agent
tries to avoid the hazardous area. We show results for static
costs as well as for stochastic costs at different risk levels. It
is worth noting that we don’t need to retrain our lower-level
RL policy for different cost thresholds K.
Static Cost: In this environment, the agent incurs a cost c=1
for each step in the hazard, otherwise ¢ = 0. We evaluate our
method with different cost limits K shown with CoSHRL-
4, CoSHRL-7, and CoSHRL-10 in Figure 3b and Figure 3a.
In Figure 3b, the bars provide the path length (negated re-
ward) to reach the goal (plotted on the primary Y-axis) and
the purple dots indicate the success rate (plotted on the sec-
ondary Y-axis). For average negated reward (path length),
we only consider the successful trials for all algorithms. We
have the following key observations from Figure 3b: (1) Our
method reaches the goal with a high success rate under dif-
ferent cost limits with nearly 100% success. (2) Even though
our method considers cost constraints, it is able to outper-
form SORB (which does not consider the cost constraint)
not only in success rate but also in the length of the tra-
jectory (average negated reward). (3) The success rate of
GRL (goal-conditioned RL) is less than 20% but for the av-
erage negated reward we only count the successful trials,
hence the negated reward for goal-conditioned RL is better
(lower) than our method. (4) WCSAC and SAC-Lagrangian,
both non-hierarchical RL techniques that consider cost con-
straints, have ~ (0% success rate in this long-horizon task and
we don’t consider them as baselines in further experiments.
The min., max. and mean cost for the different algorithms
are shown in Figure 3a. With increasing cost limit, the upper
bound, lower bound, and median of the total cost increase for
CoSHRL. This is expected as the path in the hazardous area
increases and therefore potentially the error in the computa-
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static risk after training in maze environment. Only successful trials are counted for reward.

Figure 4(a): An example safe trajectory in the safe ViZDoom environment.
Fixed obstacles are shown in black points and hazardous area is shown in red
circle. Given a start state (green point) and goal state (red point), our method
could find a sequence of waypoints (yellow points) conditioning on flexible 0
constraints threshold K (KX = 0 in this figure). Using the low level RL be-
tween the waypoints our method could reach the goal constraints (shown in

the blue line).

tion of V. can increase. The proportion of trajectories that
exceed the cost limit K = 4,7,10 are 4%, 6%, 6% respec-
tively. Examples of paths produced by different approaches
are shown in Appendix.

Stochastic Cost: In this environment, the agent incurs a cost
¢ uniformly sampled from {0, 1, 2} for each step in the haz-
ard, otherwise ¢ = 0, i.e., the total cost of n steps inside the
hazard follows a multinomial distribution. In safety-critical
domains, a worst-case cost guarantee is preferred over the
average cost bound (Yang et al. 2021). To achieve this, we
use CVaR (Rockafellar, Uryasev et al. 2000) instead of the
expected value of cost to threshold the safety of a policy.

We set cost limit K = 10 for all «, that is, the expecta-
tion of the cost of the worst o * 100% cases should be lower
than K. We evaluate our method with different o shown with
CoSHRL-0.9, CoSHRL-0.5, and CoSHRL-0.1. All experi-
ments are averaged over 100 runs.

In Table 1, the results show that our method CoSHRL
with a = 0.9, 0.5 satisfy the corresponding CVaR bound
(columns Ca shows the estimated average costs of the worst
a * 100% trajectories) while CoSHRL violates the CVaR
bound (K = 10) slightly with the tight level & = 0.1 be-
cause of the inherent approximation in distributional RL,

stochastic risk after training
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Figure 4(b): Success rate and avg. negated reward of our
method, SORB, and GRL in Safe-ViZDoom. Only suc-
cessful trials are counted for reward
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Figure 4(c): Boxplot of cost in evaluation after training
in Safe-ViZDoom.

EC C09 C05 CO0.1 ENR %o

CoSHRL-0.9 790 847 1020 14.67 47.83 16%
CoSHRL-0.5 6.68 7.31 9.20 1322 48.58 11%
CoSHRL-0.1 647 17.06 886 12.11 48.60 7%
SORB 8.06 897 1154 15.14 5298 30.5%

Table 1: Different metrics of performance in the environ-
ment with stochastic cost: expected cost (EC), cost-CVaR-
0.9 (C0.9), cost-CVaR-0.5 (C0.5), cost-CVaR-0.1 (CO0.1),
and expected negated reward (ENR)

namely that of discretization and truncation of long-tailed
multinomial distribution. As « decreases, our method is
more risk-averse so the percentage of trajectories that ex-
ceed the cost limit K decreases (% column), and cost and
reward both improve. The statistical properties of the total
cost incurred by CoSHRL under different risk level « are
shown in Figure 3c.

Image-based Navigation with Obstacles and Hazards:
Due to the lack of a constrained image-based environment,
we design the Safe-ViZDoom environment in Figure 4a
based on ViZDoom (Wydmuch, Kempka, and Jaskowski
2019). The Safe-VizDoom environment is a labyrinth in the



shape of a clover with a hazardous area in the middle, mak-
ing it challenging due to the very narrow safe area in the
middle. The agent can move North/South/East/West by a
fixed distance, whereas states only consist of first-person vi-
sual perspective (3x160x120 dimension). The agent incurs a
cost ¢ = 1 for each step in the hazard, otherwise ¢ = 0. The
start is randomly placed in one of the four rooms, while the
goal is randomly set in the opposite room.

We evaluate CoSHRL with different cost limits K shown
as CoSHRL-0, CoSHRL-4, and CoSHRL-8 in Figure 4b
and Figure 4c without retraining the low level RL agent.
Each result is the average over 100 random runs. We ob-
tain similar results to other domains. Figure 4b shows that
CoSHRL achieves a high success rate (> 95%) in reach-
ing the goal with varying cost limits. As the cost limit in-
creases, CoSHRL obtains shorter paths (avg. negated re-
ward), indicating that the agent ventures deeper into hazards.
For avg. negated reward, CoSHRL outperforms the uncon-
strained SORB and GRL for cost limit X = 8, which is
roughly the cost incurred by SORB and GRL in Figure 4c.
Figure 4c shows the proportions of trajectories exceeding the
cost limits of K = 0,4, 8 are 2%, 4%, 5% respectively. In
comparison, unconstrained SORB and GRL achieve shorter
path lengths (average negated reward) but incur cost over 8
in over half of their trajectories. The non-hierarchical GRL
has a low success rate of 55%, resulting in the agent getting
stuck in corners.

4 Discussion

We introduced a constrained search within the hierarchical
RL approach. The RL agent is utilized to find paths between
any two “nearby” states. Then, the constrained search uti-
lizes the RL agent to reach far away goal states from start-
ing states, while satisfying various types of constraints. We
were able to demonstrate the better scalability, theoretical
soundness, and empirical utility of our approach, CoSHRL,
over existing approaches for Constrained RL and Hierarchi-
cal RL. Next, we discuss some limitations and future work.

Our work is based on the assumption that the low level
RL agent has a high success rate in reaching each waypoint,
even though there might be events such as action execution
failure. RL in general can handle action execution uncer-
tainty (process noise) by observing the current (unexpected)
state after an action failure and appropriately executing con-
tingency actions from such observations. Thus, the low level
RL will ultimately reach the local goal even though it might
occasionally (with some probability) take more steps due to
action execution failure. In extreme cases, due to poor gen-
eralization the low level RL can declare a state unreachable,
even though the state might be reachable. This can some-
times result in no path being found to the final goal. How-
ever, this happens very rarely, which is the main reason why
the success rate of our method in the test environments (Fig-
ures 3b, 4b) are not exactly 100%. A possible direction to
improve this is for constrained RRT* to actively ask for re-
training the low level agent; an active retraining paradigm
could be an interesting future research direction.
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