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Abstract

Safety in goal directed Reinforcement Learning (RL) settings
has typically been handled through constraints over trajecto-
ries and have demonstrated good performance in primarily
short horizon tasks. In this paper, we are specifically inter-
ested in the problem of solving temporally extended decision
making problems such as robots cleaning different areas in a
house while avoiding slippery and unsafe areas (e.g., stairs)
and retaining enough charge to move to a charging dock; in
the presence of complex safety constraints. Our key contri-
bution is a (safety) Constrained Search with Hierarchical Re-
inforcement Learning (CoSHRL) mechanism that combines
an upper level constrained search agent (which computes a
reward maximizing policy from a given start to a far away
goal state while satisfying cost constraints) with a low-level
goal conditioned RL agent (which estimates cost and reward
values to move between nearby states). A major advantage of
CoSHRL is that it can handle constraints on the cost value
distribution (e.g., on Conditional Value at Risk, CVaR) and
can adjust to flexible constraint thresholds without retrain-
ing. We perform extensive experiments with different types of
safety constraints to demonstrate the utility of our approach
over leading approaches in constrained and hierarchical RL.

1 Introduction
Reinforcement Learning (RL) is a framework to solve de-
cision learning problems in environments that have an un-
derlying (Partially Observable) Markov Decision Problem,
(PO-)MDP. Deep Reinforcement Learning (François-Lavet
et al. 2018; Hernandez-Leal, Kartal, and Taylor 2019) ap-
proaches have been shown to solve large and complex de-
cision making problems. For RL agents to be relevant in
the day-to-day activities of humans, they need to handle a
wide variety of temporally extended tasks while being safe.
A few examples of such multi-level tasks are: (a) planning
and searching for valuable targets by robots in challenging
terrains (e.g., disaster areas) while navigating safely and pre-
serving battery to reach a safe spot; (b) for autonomous elec-
tric vehicles to travel long distances in minimum time, they
need to optimize the position of recharge locations along the
way to ensure the vehicle is not left stranded; (c) cleaning
robots to clean a house while avoiding slippery and unsafe
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areas (e.g., stairs) and retaining enough charge to move to
a charging dock. The following key challenge needs to be
addressed in the above mentioned problems of interest:
• Computing an execution policy that satisfies safety con-

straints (in expectation or in a confidence bounded way)
for temporally extended decision making problems in
the presence of uncertainty.

Existing research in temporally extended decision making
problem has focused on hierarchical RL methods (Nachum
et al. 2018; Zhang et al. 2020; Kim, Seo, and Shin 2021;
Levy et al. 2017). These approaches successfully solve long
horizon tasks mainly in the widely applicable setting of goal
conditioned RL (Liu, Zhu, and Zhang 2022), but they are un-
able to deal with safety constraints. On the other hand, most
existing research in handling trajectory based safety con-
straints has focused on constrained RL approaches (Simão,
Jansen, and Spaan 2021; Gattami, Bai, and Aggarwal 2021),
where constraints are enforced on expected cost. A recent
method that has considered percentile/confidence based con-
straints is WCSAC (Yang et al. 2021). Unfortunately, these
constrained RL approaches are typically only able to solve
short horizon problems where the goal is not too far away.
We address the need to bring together these two threads
of research on hierarchical RL and constrained RL, which
have mostly progressed independently of each other (Roza,
Roscher, and Günnemann 2023). To that end, we propose
a new Constrained Search with Hierarchical Reinforcement
Learning (CoSHRL) approach, where there is a hierarchy of
decision models: (a) The lower level employs goal condi-
tioned distributional RL to learn reward and cost distribu-
tions to move between two local states that are near to each
other. (b) The upper level is a constrained search mecha-
nism that builds on Informed RRT* (Gammell, Srinivasa,
and Barfoot 2014) to identify the best waypoints to get
from a given start state to a “far” away goal state. This is
achieved while ensuring overall expected or percentile cost
constraints (representative of robust safety measures) are en-
forced.

Contributions: Our key contributions are: (1) we provide a
scalable constrained search approach suited for long hori-
zon tasks within a hierarchical RL set-up, (2) we are able to
handle rich percentile constraints on cost distribution, (3) the
design of enforcing the constraints at the upper-level search



allows fast recomputation of policies in case the constraint
threshold or start/goal states change, and (4) mathematical
guarantee for our constrained search method. Finally, we
provide an extensive empirical comparison of CoSHRL to
leading approaches in hierarchical and constrained RL.
Related Work: Constrained RL uses the Constrained MDP
(CMDP) to maximize a reward function subject to expected
cost constraints (Satija, Amortila, and Pineau 2020; Panka-
yaraj and Varakantham 2023; Achiam et al. 2017; Gattami,
Bai, and Aggarwal 2021; Tessler, Mankowitz, and Man-
nor 2018; Liang, Que, and Modiano 2018; Chow et al.
2018; Simão, Jansen, and Spaan 2021; Stooke, Achiam, and
Abbeel 2020; Liu et al. 2022; Yu, Xu, and Zhang 2022;
Zhang, Vuong, and Ross 2020). WCSAC (Yang et al. 2021)
extends Soft Actor-Critic and considers a certain level of
CVaR of the cost distribution as a safety measure; (Chow
et al. 2017) use Lagrangian approach for the same. (Sootla
et al. 2022) prevent only worst case cost (no CVaR or ex-
pected) violation by tracking the cost budget in the state,
which further does not allow for multiple constraints. As far
as we know and from benchmarking work (Ray, Achiam,
and Amodei 2019a), there is no constrained RL designed
for long-horizon tasks, and even for short-horizon all cur-
rent approaches need retraining if the constraint threshold
changes.

Hierarchical Reinforcement Learning (HRL) addresses
the problem of sequential decision making at multiple levels
of abstraction (Kulkarni et al. 2016; Dietterich 2000). The
problem could be formulated with the framework of MDP
and semi-MDP (SMDP) (Sutton, Precup, and Singh 1999).
Utilizing off-policy RL algorithms, a number of recent
methods such as HIRO (Nachum et al. 2018), HRAC (Zhang
et al. 2020), and HIGL (Kim, Seo, and Shin 2021) propose
a hierarchy where both lower and upper level are RL learn-
ers and the higher level specifies sub-goals (Kaelbling 1993)
for the lower level. However, it is hard to add safety con-
straints to such HRL with RL at both levels because to en-
force constraints the higher level policy must generate con-
straint thresholds for the lower-level agent while ensuring
the budget used by multiple invocations of the lower-level
agent does not exceed the total cost budget. Also, the lower-
level policy should be able to maximize reward for any given
cost threshold in the different invocations by the upper level.
However, both these tasks are not realizable with the existing
results in constrained RL. Options or skills learning coupled
with a higher level policy of choosing options is another ap-
proach (Eysenbach et al. 2018; Kim, Ahn, and Bengio 2019)
in HRL. CoSHRL can be viewed as learning primitive skills
of reaching local goals, and the simplicity of this task as well
as of the search makes our approach scalable and flexible.

Closer to our method, SORB (Eysenbach, Salakhutdinov,
and Levine 2019) employs a graph-based path-planning (Di-
jkstra’s algorithm) at the higher level and distributional RL
at low level, where the continuous state is discretized to yield
a massive graph. SORB achieves better success rate in com-
plex maze environments compared to other HRL techniques
but cannot enforce constraint and has high computational
cost due to a large graph. We present a thorough comparison
of our ConstrainedRRT* to SORB’s planner in Section 2.

PALMER (Beker, Mohammadi, and Zamir 2022) employs
RRT* for the high level, but instead of distributional RL at
the low-level it uses an offline RL like approach, requiring
a large pre-collected dataset fully covering the environment;
importantly, PALMER also cannot enforce constraints.

Logic based compositional RL (Jothimurugan et al. 2021;
Neary et al. 2022) shares similarities with our approach in
terms of combining a high-level planner with a low-level RL
agent. However, works in compositional RL have a binary
logical specification of success, whereas we are in a quanti-
tative setting of constrained MDP with rewards and cost con-
straints (and novel CVaR constraints). Also, our utilization
of the RRT* planner is quite different from the reachability
planner used in these works.

Problem Formulation
We have an agent interacting with an environment in a
Markov Decision Process (MDP) setting. The agent ob-
serves its current state s ∈ S, where S ⊂ Rd is a continuous
state space. The initial state sO for each episode is sampled
according to a specified distribution and the agent seeks to
reach goal state sG. The agent’s action space can be con-
tinuous (a ⊂ Rn) or discrete. The episode terminates when
the agent reaches the goal, or after T steps, whichever oc-
curs first. The agent earns immediate reward rt(st, at) and
separately also incurs immediate cost ct(st, at) when acting
in time step t. V π(sO, sG) and V π

c (sO, sG) are the cumula-
tive undiscounted expected reward and cost respectively for
reaching goal state sG from origin state sO following policy
π. The typical optimization in constrained RL (Achiam et al.
2017) is:

max
π

V π(sO, sG) s.t. V π
c (sO, sG) ≤ K (1)

where the value functions are given as V π(sO, sG) =

E
[∑T

t=0 r
t(st, at)|sT = sG, s

0 = sO
]

and V π
c (so, sG) =

E
[∑T

t=0 c
t(st, at)|sT = sG, s

0 = sO
]

with the expectation
taken over policy and environment.

However, in the above, the constraint on the expected
cost value is not always suitable to represent constraints on
safety. E.g., to ensure that an autonomous electric vehicle is
not stranded on a highway, we need a robust constraint that
ensures the chance of that happening is low, which cannot be
enforced by expected cost constraint. Therefore, we consider
a cost constraint where we require that the CVaR (Rockafel-
lar, Uryasev et al. 2000) of the cost distribution (given by the
bold font random variable Vπ

c (sO, sG) is less than a thresh-
old. We skip writing sO, sG when implied. Intuitively, Value
at Risk, V aRα represents the minimum value for which the
chance of violating the constraint (i.e., Vπ

c > k) is less than
α specified as

V aRα(Vπ
c )=inf{k | Pr(Vπ

c > k) ≤ α}
Conditional VaR, CV aRα intuitively refers to the ex-
pectation of values that are more than the V aRα, i.e.,
CV aRα(V

π
c ) = E[Vπ

c | Vπ
c ≥ V aRα(V

π
c )]. With this ro-

bust variant of the cost constraint (also known as percentile
constraint), the problem that we solve for any given α is

maxπ V
π(sO, sG) s.t. CV aRα(V

π
c ) ≤ K (2)



Figure 1: Overview of CoSHRL. Step 1: Train a local goal-conditioned RL agent using multiple randomly selected (o, g) (o is
start, g is goal) pairs in a constrained environment (top part). The red square indicates a high-cost region. The learning is local
and hence the goal will be unreachable if it’s not “near” to the start. In this step, the local value function V and the cost function
Vc are learned. Step 2: Generate waypoints guided by V and Vc using the proposed ConstrainedRRT* algorithm (i) The search
samples state C, and O is not within the dashed circle of “near” states. Although both A and B are within the circle, the path
from O to C via B is better as V (O,B) +V (B,C) < V (O,A) +V (A,C) using low-level agent’s V function. So, edge (B, C) is
added to the tree. (ii) For new sample E, E is “near” from C and D, but the edge (C, E) is not valid because of cost constraint
CV aRα(Vc(O, B) +Vc(B, C) +Vc(C, E)) > K. (iii) A path (O, B, C, D, E, L, G) within the cost constraint is found. (iv) As
the number of sampled states increases, a better path (O, B, I, D, E, L, G) is found. Step 3: Leveraging the waypoints from step
2, the pre-trained goal-conditioned RL agent completes the task.

Note that α=1 is risk neutral, i.e., CV aR1(V
π
c )=E[Vπ

c ]=
V π
c , and α close to 0 is completely risk averse.

2 Approach
Our approach, referred to as CoSHRL, solves the problem
in Equation 2. As shown in Figure 1, CoSHRL employs
a lower-level distributional RL agent and an upper-level
search agent. First, the goal-conditioned (Kaelbling 1993)
off-policy distributional RL agent learns local distribution
of reward and cost between states that are “near” to each
other. Then, the upper-level agent is constructed using a con-
strained search algorithm by utilizing the reward and cost
distributions. Finally, through its interactions with the en-
vironment, the lower-level agent reaches the far away goal
guided by the waypoints produced by the constrained search.
Lower Level Agent: Distributional RL (Bellemare, Dab-
ney, and Rowland 2023) is a popular technique that enables
learning distribution of value functions instead of just ex-
pected values. Distributional RL learns a policy π̂ and main-
tains a network representing the distribution of Q; we show
how to derive V,Vc from the learned policy π̂.

Why distributional RL? For rewards, we need to estimate
just the expected V π(s, s′), but it is known from the liter-
ature that learning the distribution of Vπ and then calcu-
lating expected value leads to better estimates (Eysenbach,
Salakhutdinov, and Levine 2019; Beker, Mohammadi, and
Zamir 2022). For completeness, we provide experimental
evidence of this phenomenon in Appendix. For enforcing
percentile based cost constraint, we need to estimate the dis-
tribution of cost Vc for the π̂ learned by lower-level agent.
This is only possible with the use of distributional RL.

Representation: In distributional RL for discrete actions,
the distribution of Q is assumed to be over N discrete
values. The distribution of a goal conditioned Q is repre-
sented by Qθ (neural network parameterized by θ), which
takes as input s, s′, a (s′ is local goal) and outputs a vector
[p1, . . . , pN ] where pi is the probability of expected reward
value taking the ith discrete value. For completeness, the
standard training of distributional RL is described in the Ap-
pendix, yielding a trained policy π̂. For training, we choose
nearby start and end states at random throughout the state
space, relying on the generalizability of neural networks to
obtain good estimates for nearby start and goal in the whole
state space.

Next, for discrete actions, we represent the distribution
of value Vπ̂ as a neural network V w, which again outputs
a probability vector. For simplicity, we do not include the
learned policy π̂ (which will not change) in the notation
for V w. The fixed learned π̂ allows us to estimate V w di-
rectly by minimizing the KL divergence between a target
V t(s, s′) = Qθ(s, s′, a), a∼ π̂(·|s, s′) and the current V w,
i.e., minw DKL(V

t||V w). We optimize the above by storing
experiences sampled according to π̂ in a replay buffer and
sampling mini-batches to minimize the loss above, analo-
gous to supervised learning. Once the vector of probabilities
V w is obtained, we can obtain the expected V by calculating
the expectation.

For continuous actions, we can directly learn the distribu-
tion of V, represented by a network V w using the same vec-
tor of probability representation of the distribution of value
as used above for Qθ.

For problems in path search with no movement uncer-



tainty, reward r is set to −1 for each step such that the
learned expected negated reward value function −V (s, s′)
reflects the estimated length of the shortest path (avoiding
impenetrable obstacles) from s to s′ as done in (Kaelbling
1993; Eysenbach, Salakhutdinov, and Levine 2019). In par-
ticular, we assume that −V is learned accurately and prove
the following result:
Lemma 1. Given S ⊂ Rd, assuming −V gives the obstacle
avoiding shortest path length, −V is a distance metric.

Next, for costs, we note that we performed the reward es-
timation without considering costs since in our approach the
lower-level agent does not enforce constraints. However, the
lower level agent does estimate the local costs as distribu-
tional Q values as a Qθ

c network in the discrete action case
or distributional V values as a V w

c network in the contin-
uous action case. Then, in the discrete action case, simi-
lar to above learning of V w, the fixed learned policy π̂ al-
lows us to estimate the vector of probability V w

c function
directly by minimizing the KL divergence between a tar-
get V t

c = Qθ
c(s, s

′, a), a ∼ π̂(·|s, s′) and the current V w
c :

minw DKL(V
t
c ||V w

c ). In the continuous action case, the net-
work V w

c is already learned directly (details in Appendix).
Upper Level Agent: Once the lower-level RL training is
complete, we obtain a local goal-conditioned value func-
tion for any origin and local goal state that are near to each
other. In this section, we use the learned expected value
V and cost random variable Vc (removing superscripts for
notation ease). First, we formulate the upper-level optimal
constrained search problem. The RRT* search works in a
continuous space S ⊂ Rd. A path is a continuous function
σ : [0, 1]→Rd with the start point as σ(0) and end as σ(1).
In practice, a path is represented by a discrete number of
states {σ(xi)}i∈[n] for 0 = x0 < x1 < ... < xn−1 < xn = 1
and some positive integer n (n can be different for differ-
ent paths). A collision-free path is one that has no overlap
with fixed obstacles. The set of all paths is Σ, and the set
of obstacle free paths is Σfree. A length of path is defined
as supn:0=t0<...tn=1

∑n
i=1 d(xti−1 , xti) for given underlying

distance d. The RRT* search (or the Informed version) finds
the shortest path from the given start and end point.

Given the discrete representation, for our CoSHRL the
path traversed between σ(xi) and σ(xi+1) is determined by
the lower-level agent’s policy. Every path σ ∈ Σ provides a
reward Rσ and incurs a cost Cσ . We define the reward for
segment (σ(xi), σ(xi+1)) of a path as V (σ(xi), σ(xi+1)),
where V is the local goal-conditioned value function learned
by the lower-level agent. Similarly, the cost incurred for seg-
ment (σ(xi), σ(xi+1)) is Vc(σ(xi), σ(xi+1)). Thus,

Rσ =

n−1∑
i=0

V (σ(xi), σ(xi+1)) (3)

Cσ =

n−1∑
i=0

Vc(σ(xi), σ(xi+1)) (4)

In CoSHRL, the constrained search problem is to find the
optimal path, σ∗ (∈ argmaxσ∈Σ Rσ) from sO to sG sub-
ject to a cost threshold, i.e., CV aRα(Cσ∗) ≤ K. As −V

Algorithm 1: ConstrainedRRT* (so, sG, V,Vc,K)
1 V ← {so}, E ← ∅ , Ssoln ← ∅, T = (V, E)
2 for iteration = 1 ... N do
3 T = Extend node(so, sG, V,Vc,K, T , Ssoln)

4 return best solution in Ssoln

def Extend node(so, sG, V,Vc,K, T , Ssoln)
5 Sample snew within min(rRRT∗, η) from its

nearest node in T as in Informed RRT*
6 Snear ← Find all nodes in T within

min(rRRT∗, η) from snew
7 Find smin ∈ argmins{−R(s)−V (s, snew) | s∈

Snear,Valid edge(T , s, snew,Vc,K)}
8 V ← V ∪ {snew}, E ← E ∪ {(smin, snew)}
9 Scand = {s∈Snear | −R(snew)− V (snew, s)<

−R(s), Valid edge(T , snew, s,Vc,K)}
10 for ∀s ∈ Scand do
11 sparent ←Parent(s), E ← E\{(sparent, s)},

V ← V ∪ {snew}, E ← E ∪ {(snew, s)}
12 If snew is near the goal sG, then form σ by

tracking parents of snew and Ssoln←Ssoln∪{σ}

is the shortest distance considering obstacles (see the text
before Lemma 1), the above optimization essentially finds
the shortest path measured in distance −V from sO to sG
avoiding all obstacles and within the cost constraint K.

Our approach has immediate advantages over the state-
of-the-art SORB (Eysenbach, Salakhutdinov, and Levine
2019), which also employs an upper level planner and lower
level RL. SORB constructs a complete graph and then com-
putes the shortest path using Dijkstra’s algorithm. However,
SORB has fundamental limitations: (1) The graph is built
from the replay buffer of explored nodes. This can result in
bad distribution of nodes in the state space (without consid-
ering start, goal, or obstacles). (2) The coarse discretization
can result in a non-optimal path between the start and goal
state (Karaman and Frazzoli 2011). (3) Construction of com-
plete graph yields O(N2) complexity for Dijkstra’s algo-
rithm with N nodes (compared to N logN for our search).

Thus, an online search method that samples and grows
a tree from the given start to the goal state while avoid-
ing extending into obstacles is more suited as the upper-
level search. Hence we provide Constrained-RRT*, which
builds on Informed-RRT* (Gammell, Srinivasa, and Barfoot
2014) to handle constraints. Informed-RRT* builds upon
RRT* (Karaman and Frazzoli 2011), which works by con-
structing a tree whose root is the start state and iteratively
growing the tree by randomly sampling new points as nodes
till the tree reaches the goal. In Informed RRT*, as an in-
formed heuristic, the sampling is restricted to a specially
constructed ellipsoid. However, both Informed-RRT* and
RRT* do not take constraints into account.
Algorithm Description: We propose Constrained RRT* (Al-
gorithm 1), which builds on Informed RRT* to handle the
cost constraint. The pseudocode is provided in Algorithm 1.
We search for the optimal path σ∗ by incrementally build-
ing a tree T in the state space S. The tree, T consists of a



Algorithm 2: Valid edge (T , s, s′,Vc,K)
1 result← Vc(s, s

′)
2 while s.parent do
3 result← result+Vc(s.parent, s)
4 s← s.parent

5 if CV aRα(result) ≤ K then
6 return True
7 return False

set of nodes, V (⊂ S), and edges E (⊂ S × S). In the sub-
routine Extend node, a candidate state snew is chosen (line
5) to be added to the tree T by a sampling process that is the
same as in Informed RRT* (see Appendix for details of sam-
pling). The hyper-parameter η accounts for the fact that our
distance estimates are precise only locally (see Appendix for
hyperparameter settings).

The rewiring radius, rRRT∗ = γRRT∗(log n/n)
1/d,

where n is the current number of nodes sampled, is de-
scribed in (Karaman and Frazzoli 2011). The node smin

(line 7) that results in the shortest path (highest reward) to
snew among the nearby nodes Snear (line 6) is connected to
snew in line 8, if the edge is valid.

Here, we take a detour to explain how we determine the
validity of edges. An edge is valid if and only if adding it
does not result in a (partial) path that violates the cost con-
straint. The key insight is that this validity can be determined
by computing the convolution of the distributions associated
with the (partial) path and the current Vc. By providing the
definition of Valid edge (T , s, s′,Vc,K) in Algorithm 2 and
doing the Valid edge checks in the Extend node subroutine,
we ensure that any path output by the overall algorithm will
satisfy the cost constraints. In the pseudocode of Valid edge,
Vc represents a random variable (and so does result). Then,
the addition in line 3 of Valid edge is a convolution opera-
tion (recall that the distribution of a sum X+Y of two ran-
dom variables X,Y is found by a convolution (Ross 2014)).

Coming back to Extend node, we explore further the pos-
sible edges to be added to the tree. In particular, in line
9 (1) the edge is created only if it is valid and (2) new
edges are created from snew to vertices in Snear, if the path
through snew has lower distance (higher reward) than the
path through the current parent; in this case, the edge link-
ing the vertex to its current parent is deleted, to maintain the
tree structure. An example search run is shown in Figure 1.

Theoretical Results: The RRT* algorithm (Karaman and
Frazzoli 2011) satisfies two properties: probabilistic com-
pleteness and asymptotic optimality. Intuitively, probabilis-
tic completeness says that as number of samples n → ∞,
RRT* finds a feasible path if it exists and asymptotic opti-
mality says that as n→∞, RRT* finds the optimal path with
the highest reward. Unsurprisingly, asymptotic optimality
implies probabilistic completeness. Our key contribution is
proving asymptotic optimality of ConstrainedRRT*, which
requires complicated analysis because of constraints.

Background: We summarize many definitions from Kara-
man and Frazzoli (2011). For detailed definition statements,

we request the reader to peruse the referred paper. Karaman
and Frazzoli (2011) define addition and multiplication oper-
ations that make the set of paths Σ a vector space. Further,
they define a norm ||σ||BV on this vector space (please re-
fer to page 22 of (Karaman and Frazzoli 2011)). The dis-
tance induced by the BV norm allows for defining limits of
a sequence of path, i.e., limn→∞ σn. A solution path σ∗ is
called robustly optimal if under the metric induced by the
BV norm for any sequence of collision-free paths σn, if
limn→∞ σn = σ∗ then limn→∞ Rσn = Rσ∗ . A path is said
to have strong δ clearance if it is not within δ distance of
any obstacle. A path σ has weak δ clearance if there exists
a sequence of paths with strong clearance converging to σ.
For any path finding algorithm ALG, let Y ALG

n be the ran-
dom variable corresponding to the reward of the max-reward
solution returned at the end of iteration n.
Definition 1 (Asymptotic optimality (Karaman and Frazzoli
2011)). An algorithm ALG is asymptotically optimal if, for
any path search problem that admits a robustly optimal solu-
tion with finite reward R∗, P({lim supn Y

ALG
n = R∗})=1.

Theoretical Results for Constraints: In this paper, due to
the presence of constraints, we have to modify definitions.
For instance, robustly optimal definition has to account for
costs, i.e., the solution path σ∗ is called robustly optimal with
constraints if under the metric induced by the BV norm for
any sequence of collision-free paths σn if limn→∞ σn = σ∗

then limn→∞ Rσn
= Rσ∗ and if limn→∞ σn = σ∗ then

limn→∞ Cσn
= Cσ∗ . Next, the definition of weak δ clear-

ance of optimal path σ∗ is extended to assume that there
exists a sequence of strong δ clearance paths with total cost
≤ K + ϵ when the path σ∗ has cost ≤ K for any small
ϵ > 0. Intuitively, this means that if the optimal path has
cost at most K then nearby strong δ clearance paths con-
verging to the optimal path are also cost bounded closely by
K while allowing ϵ extra cost for possibly slightly longer
paths. We redefine Definition 1 with the cost constraint. Let
ZALG
n be the random variable corresponding to the cost of

the max-reward solution included in the graph returned by
ALG at the end of iteration n (n samples). Then, we define:
Definition 2 (Asymptotic optimality with constraints). An
algorithm ALG is asymptotically optimal with constraints if,
for any path search problem that admits a robustly optimal
solution with finite cost constraints K and with finite reward
R∗, P({lim supn Y

ALG
n = R∗}) = 1 and ZALG

n ≤ K.
We justify this definition as follows: since ALG will stop

in finite n, we require that the output of ALG is always
within the cost threshold K for any n at which the algo-
rithm stops. We prove that our change (Valid Edge check)
preserves asymptotic optimality with constraints.
Theorem 1. Let d be the dimension of the space S, µ(Sfree)
denotes the Lebesgue measure (i.e., volume) of the obstacle-
free space, and τd be the volume of the unit Euclidean norm
ball in the d-dimensional space. The Constrained RRT*
in Algorithm 1 preserves asymptotic optimality with con-
straints for γRRT∗ ≥ (2(1 + 1/d))1/d

(µ(Sfree)
τd

)1/d
.

The proof of RRT* involves constructing a random graph
via a marked point process that is shown as equivalent to



Figure 2(a): The complex point maze envi-
ronment. Wall obstacles are in black. The en-
vironment on the right has hazardous red cir-
cles. Figure 2(b): Success rate vs Difficulty Figure 2(c): Neg. reward vs Difficulty

the RRT* algorithm. In the full proof in Appendix. we in-
corporate cost constraints in the construction of the random
graph and show its equivalence to ConstrainedRRT*. Then,
the analysis is done for this constructed random graph. The
analysis involves (1) constructing a sequence of paths σn

with strong δn clearance converging to the optimal path σ∗

within cost constraint, (2) constructing a covering of the path
σn with a sequence of norm balls with radius δn/4; we use
a special value for δn to account for cost constraints. It is
shown that with large enough n and our special choice of
δn, the tree in ConstrainedRRT* will have a path satisfying
cost constraints through these balls and will converge to σ∗.

3 Experiments
We evaluate our method on two complex point maze envi-
ronments and a novel image-based ViZDoom environment
which have been used as a benchmark in RL navigation
tasks (Zhang et al. 2020; Nachum et al. 2018; Beker, Mo-
hammadi, and Zamir 2022). These maps include obstacles
(impenetrable) and hazards (high cost but penetrable). We
compare against SAC-Lagrangian (SAC-lag) (Yang et al.
2021; Stooke, Achiam, and Abbeel 2020), WCSAC (Yang
et al. 2021), SORB (Eysenbach, Salakhutdinov, and Levine
2019), and Goal-conditioned RL (GRL) (Kaelbling 1993).
SORB and GRL are not designed to enforce constraints, so
they can get higher rewards but suffer from constraint vio-
lations. Hyperparameter settings and additional results on
other environments are in Appendix.
2D Navigation with Obstacles: The first environment is
point maze environment of Figure 2a (left), which has wall
obstacles, but no hazards (thus, no cost constraints). The
start point is randomly set in the environment while the goal
is set 69ν away from the start where ν is the difficulty level.
As the immediate reward r(s, a) = −1, the agent needs to
reach the goal using the shortest path that avoids the walls.

We compare CoSHRL with goal-conditioned RL and
SORB at different difficulty levels. For a fair comparison,
both the number of nodes for SORB and the number of it-
erations for our method are set as 1000. For each experi-
ment, we ran 100 trials with different seeds. We compare
(a) the percentage of times the agent reaches the goal; and
(b) the negated reward (i.e., the path length). In Figure 2b,
we observe that the success rate of CoSHRL is 100% and
it outperforms SORB with a larger margin as the difficulty
level increases. In Figure 2c, we show all trials’ negated re-
ward (lower is better) for GRL, SORB, and CoSHRL. The

difficulty level ν decides the optimal distance between start
and goal, e.g., when ν = 0.3, the optimal distance is set at
69×0.3 ≈ 21; we observed that the baseline approaches fre-
quently provided very circuitous paths much longer than the
optimal path, e.g., SORB and GRL often provide circuitous
paths with length exceeding 40 for ν = 0.3, so we cut them
off at 40 for ν = 0.3. We cut all trajectories off for baselines
(thereby providing advantage to baselines) at 40, 60, 80, 100
for difficulty levels 0.3, 0.5, 0.7, 0.9 respectively.

Yet, we observe that not only the average negated reward
(path length) but also the upper bound and lower bound out-
perform SORB and GRL at different difficulty levels.
2D Navigation with Obstacles and Hazards: In this part,
we evaluate our method in the point maze environment of
Figure 2a (right), where there are two hazards set in the top
left room and bottom left room. The agent starts randomly in
the bottom left room and the goal is randomly set in the top
right room. The trajectory length will be longer if the agent
tries to avoid the hazardous area. We show results for static
costs as well as for stochastic costs at different risk levels. It
is worth noting that we don’t need to retrain our lower-level
RL policy for different cost thresholds K.
Static Cost: In this environment, the agent incurs a cost c=1
for each step in the hazard, otherwise c = 0. We evaluate our
method with different cost limits K shown with CoSHRL-
4, CoSHRL-7, and CoSHRL-10 in Figure 3b and Figure 3a.
In Figure 3b, the bars provide the path length (negated re-
ward) to reach the goal (plotted on the primary Y-axis) and
the purple dots indicate the success rate (plotted on the sec-
ondary Y-axis). For average negated reward (path length),
we only consider the successful trials for all algorithms. We
have the following key observations from Figure 3b: (1) Our
method reaches the goal with a high success rate under dif-
ferent cost limits with nearly 100% success. (2) Even though
our method considers cost constraints, it is able to outper-
form SORB (which does not consider the cost constraint)
not only in success rate but also in the length of the tra-
jectory (average negated reward). (3) The success rate of
GRL (goal-conditioned RL) is less than 20% but for the av-
erage negated reward we only count the successful trials,
hence the negated reward for goal-conditioned RL is better
(lower) than our method. (4) WCSAC and SAC-Lagrangian,
both non-hierarchical RL techniques that consider cost con-
straints, have≈0% success rate in this long-horizon task and
we don’t consider them as baselines in further experiments.

The min., max. and mean cost for the different algorithms



Figure 3(a): Boxplot of cost in evaluation for
static risk after training in maze environment.

Figure 3(b): Success rate and avg. neg. reward of
our method and baselines in maze environment.
Only successful trials are counted for reward.

Figure 3(c): Boxplot of cost evaluation for
stochastic risk after training

Figure 4(a): An example safe trajectory in the safe ViZDoom environment.
Fixed obstacles are shown in black points and hazardous area is shown in red
circle. Given a start state (green point) and goal state (red point), our method
could find a sequence of waypoints (yellow points) conditioning on flexible
constraints threshold K (K = 0 in this figure). Using the low level RL be-
tween the waypoints our method could reach the goal constraints (shown in
the blue line).

Figure 4(b): Success rate and avg. negated reward of our
method, SORB, and GRL in Safe-ViZDoom. Only suc-
cessful trials are counted for reward

Figure 4(c): Boxplot of cost in evaluation after training
in Safe-ViZDoom.

are shown in Figure 3a. With increasing cost limit, the upper
bound, lower bound, and median of the total cost increase for
CoSHRL. This is expected as the path in the hazardous area
increases and therefore potentially the error in the computa-
tion of Vc can increase. The proportion of trajectories that
exceed the cost limit K = 4, 7, 10 are 4%, 6%, 6% respec-
tively. Examples of paths produced by different approaches
are shown in Appendix.
Stochastic Cost: In this environment, the agent incurs a cost
c uniformly sampled from {0, 1, 2} for each step in the haz-
ard, otherwise c = 0, i.e., the total cost of n steps inside the
hazard follows a multinomial distribution. In safety-critical
domains, a worst-case cost guarantee is preferred over the
average cost bound (Yang et al. 2021). To achieve this, we
use CVaR (Rockafellar, Uryasev et al. 2000) instead of the
expected value of cost to threshold the safety of a policy.

We set cost limit K = 10 for all α, that is, the expecta-
tion of the cost of the worst α ∗ 100% cases should be lower
than K. We evaluate our method with different α shown with
CoSHRL-0.9, CoSHRL-0.5, and CoSHRL-0.1. All experi-
ments are averaged over 100 runs.

In Table 1, the results show that our method CoSHRL
with α = 0.9, 0.5 satisfy the corresponding CVaR bound

EC C0.9 C0.5 C0.1 ENR %

CoSHRL-0.9 7.90 8.47 10.20 14.67 47.83 16%
CoSHRL-0.5 6.68 7.31 9.20 13.22 48.58 11%
CoSHRL-0.1 6.47 7.06 8.86 12.11 48.60 7%
SORB 8.06 8.97 11.54 15.14 52.98 30.5%

Table 1: Different metrics of performance in the environ-
ment with stochastic cost: expected cost (EC), cost-CVaR-
0.9 (C0.9), cost-CVaR-0.5 (C0.5), cost-CVaR-0.1 (C0.1),
and expected negated reward (ENR)

(columns Cα shows the estimated average costs of the worst
α ∗ 100% trajectories) while CoSHRL violates the CVaR
bound (K = 10) slightly with the tight level α = 0.1 be-
cause of the inherent approximation in distributional RL,
namely that of discretization and truncation of long-tailed
multinomial distribution. As α decreases, our method is
more risk-averse so the percentage of trajectories that ex-
ceed the cost limit K decreases (% column), and cost and
reward both improve. The statistical properties of the total
cost incurred by CoSHRL under different risk level α are
shown in Figure 3c.
Image-based Navigation with Obstacles and Hazards:



Due to the lack of a constrained image-based environment,
we design the Safe-ViZDoom environment in Figure 4a
based on ViZDoom (Wydmuch, Kempka, and Jaśkowski
2019). The Safe-VizDoom environment is a labyrinth in the
shape of a clover with a hazardous area in the middle, mak-
ing it challenging due to the very narrow safe area in the
middle. The agent can move North/South/East/West by a
fixed distance, whereas states only consist of first-person vi-
sual perspective (3x160x120 dimension). The agent incurs a
cost c = 1 for each step in the hazard, otherwise c = 0. The
start is randomly placed in one of the four rooms, while the
goal is randomly set in the opposite room.

We evaluate CoSHRL with different cost limits K shown
as CoSHRL-0, CoSHRL-4, and CoSHRL-8 in Figure 4b
and Figure 4c without retraining the low level RL agent.
Each result is the average over 100 random runs. We ob-
tain similar results to other domains. Figure 4b shows that
CoSHRL achieves a high success rate (> 95%) in reach-
ing the goal with varying cost limits. As the cost limit in-
creases, CoSHRL obtains shorter paths (avg. negated re-
ward), indicating that the agent ventures deeper into hazards.
For avg. negated reward, CoSHRL outperforms the uncon-
strained SORB and GRL for cost limit K = 8, which is
roughly the cost incurred by SORB and GRL in Figure 4c.
Figure 4c shows the proportions of trajectories exceeding the
cost limits of K = 0, 4, 8 are 2%, 4%, 5% respectively. In
comparison, unconstrained SORB and GRL achieve shorter
path lengths (average negated reward) but incur cost over 8
in over half of their trajectories. The non-hierarchical GRL
has a low success rate of 55%, resulting in the agent getting
stuck in corners.

4 Discussion
We introduced a constrained search within the hierarchical
RL approach. The RL agent is utilized to find paths between
any two “nearby” states. Then, the constrained search uti-
lizes the RL agent to reach far away goal states from start-
ing states, while satisfying various types of constraints. We
were able to demonstrate the better scalability, theoretical
soundness, and empirical utility of our approach, CoSHRL,
over existing approaches for Constrained RL and Hierarchi-
cal RL. Next, we discuss some limitations and future work.

Our work is based on the assumption that the low level
RL agent has a high success rate in reaching each waypoint,
even though there might be events such as action execution
failure. RL in general can handle action execution uncer-
tainty (process noise) by observing the current (unexpected)
state after an action failure and appropriately executing con-
tingency actions from such observations. Thus, the low level
RL will ultimately reach the local goal even though it might
occasionally (with some probability) take more steps due to
action execution failure. In extreme cases, due to poor gen-
eralization the low level RL can declare a state unreachable,
even though the state might be reachable. This can some-
times result in no path being found to the final goal. How-
ever, this happens very rarely, which is the main reason why
the success rate of our method in the test environments (Fig-
ures 3b, 4b) are not exactly 100%. A possible direction to

improve this is for constrained RRT* to actively ask for re-
training the low level agent; an active retraining paradigm
could be an interesting future research direction.
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A Additional Related Work
Constrained Planning commonly uses classic Dijkstra or
Bellman-Ford algorithms with label setting (Han, Kim, and
Lee 2014), which is used to label each node with its accu-
mulated resource consumption to ensure the shortest path
till now does not violate the constraints. However, as the en-
vironment grows bigger, the scale of the problem becomes
intractable quickly. Moreover, the graph-based method dis-
cretize the continuous state space which may be infeasible in
practice, especially in high-dimension environments (Gam-
mell, Srinivasa, and Barfoot 2014). Our use of sampling-
based planning algorithm (Karaman and Frazzoli 2011;
Gammell, Srinivasa, and Barfoot 2014) avoids discretization
of the whole state space which allows them to scale with
larger problems and directly consider constraints.

Model based RL techniques (Lenz, Knepper, and Sax-
ena 2015; Mnih et al. 2013; Silver et al. 2016; Watter
et al. 2015) typically use a planner after learning aspects
of the underlying environent. We note that our learning of
local reward and cost provides a high-level local inverse
model of the environment. The model learned is coarse as
it does not learn detailed prediction of actions or observa-
tions. As such, the learning of rewards and costs is also
simpler than detailed prediction of actions and transition
probabilities (Eysenbach, Salakhutdinov, and Levine 2019).
The sampling-based planning algorithm RRT*, without con-
straints, has been used an alternative choice for the plan-
ner (Beker, Mohammadi, and Zamir 2022). But, instead of
utilizing distributional RL for accessing reachable points,
PALMER (Beker, Mohammadi, and Zamir 2022) employs
contrastive learning to extract perceptual representations of
states, capturing local reachability. PALMER achieves the
shortest path by retrieving neighboring states and trajecto-
ries from a pre-collected dataset, and subsequently employs
sampled-based algorithms (e.g., PRM and RRT) to perform
long-horizon planning by connecting trajectory segments
within the dataset. It should be noted that PALMER is more
like an offline approach, as it requires a pre-collected dataset
fully covering the environment. In contrast, our method does
not necessitate a pre-collected dataset and exploration within
the environment is facilitated by a low-level reinforcement
learning algorithm. Note that none of these methods enforce
any constraint.

B Experimental Details and Additional
Experiments

The reader might want to read the training process for dis-
tributional RL in Appendix D before reading the implemen-
tation details.

Implementation Details
In this section, we describe how we performed policy opti-
mization for, the cost estimation of lower level agent and
planning for upper level agent. To learn the optimal pol-
icy in all maze invironment with continuous action space,
we use the same RL algorithm DDPG and basic network
structure as SORB (Eysenbach, Salakhutdinov, and Levine

2019). To learn the optimal policy in Safe ViDoom envi-
ronment with discrete action space, we use distributional
DQN due to the discrete action space. Due to the highly-
dimensional state space of Safe ViZDoom (3x160x120), we
employ a pretrained ResNet16 as the image encoder. The
ResNet16 is pre-trained using a pre-collected dataset con-
taining 30k (state, position) pairs and fixed when training the
policy. the cost estimation for (s, sg) pairs is performed by
the low level RL and hence is reliable for smaller distances.

In Appendix D, we identified two primary sources of rep-
resentation error in distributional RL: accumulation and the
rounding of r to discrete values. To reduce quantization er-
rors when computing the Q function, it’s crucial to appro-
priately determine the first discrete value, the nth discrete
value, and the interval between adjacent discrete values. In
goal-reach tasks, where the distance is zero upon reaching
the goal, the first discrete value is naturally set to 0. Al-
though the smaller the interval between consecutive discrete
values is, the smaller the quantization errors are. To simplify
calculations, the interval between two consecutive discrete
values can be set equal to the reward for each step. By doing
this, the distributional Q value only needs a single shift, and
our experimental results indicate satisfactory performance.
Regarding the nth discrete value: if set too high, the Q fit-
ting process slows down; if set too low, the sampling effi-
ciency of the higher-level agent suffers. This is because the
agent can only sample points less than a certain threshold
(denoted as η), which is related to the nth discrete value.
After adjustments, the nthdiscrete value was determined to
be -20 for 2D navigation tasks and -10 for image-based nav-
igation tasks.

We take a curriculum-based method to further improve
the local cost estimate learned by the low level RL agent.
sg is sampled with a hyper-parameter d which shows the
distance between s and sg is no bigger than d. Once the loss
of estimator has converged, we slowly increase d until sg
can be freely sampled from the entire environment.

We provide a list of all hyper-parameters in Table 2 and
Table 3 We use the original hyper-parameters for the base-
line SORB, WCSAC and SAC-lag, respectively. All exper-
iments were run on NVIDIA Quadro RTX 6000 GPUs,
CUDA 11.7 with Python version 3.8.16 in Pytorch 1.13.

Additional Experiments
This environment shown in Figure 5a is based on the en-
vironment introduced in WCSAC (Yang et al. 2021) and
is similar to the point navigation task in Safty Gym (Ray,
Achiam, and Amodei 2019b). The scale of the environ-
ment is 40 by 40, and there is a circular hazard of ra-
dius 16 in the center of the environment. The goal is fixed
at (38, 38), while the agent starts from near the left bot-
tom corner (0, 0) of the environment randomly (x ≤ 20
and y ≤ 20). In each step, if the agent stays in the haz-
ardous area, it incurs a cost c = 1, otherwise c = 0. We
test SAC-Lagrangian (SAC-lag) (Yang et al. 2021; Stooke,
Achiam, and Abbeel 2020), WCSAC (Yang et al. 2021),
SORB (Eysenbach, Salakhutdinov, and Levine 2019), and
Goal-conditioned RL (GRL) (Kaelbling 1993) with K = 20
which is the cost limit. Note that SORB and GRL are not



Table 2: Hyper-parameters used in all Maze tasks

Hyper-parameters Values
Policy optimization
Actor learning rate 0.0003
Critic learning rate 0.0003
Collect steps per optimization 1
Replay buffer size 1000
Batch size 128
Soft update rate 0.005
Target update frequency 5
Actor update frequency 1
discount factor 1
Exploration strategy Gaussian(σ = 1.0)
Cost estimation
Collect steps per optimization 10
Replay buffer size 100000
Batch size 256
Critic learning rate 0.0003
Planning
η 2
rRRT∗ 5

designed to enforce constraints. All of the agents are fully
trained so that the success rate of each agent is 100%.

After training, we run 100 trials for each policy of these
algorithms. The length of trajectories for each policy is
represented by negated reward (lower is better) in Fig-
ure 5b. Our method achieves comparable results with SAC-
lag while outperforming WCSAC with the different risk lev-
els (WCSAC-0.1 is more risk-averse while WCSAC-0.9 is
more risk-neutral). Since SORB and GRL do not enforce
constraints, the paths output by these go directly through the
hazardous area, hence the length of paths of SORB and GRL
are shorter than all the other constrained policies.

In the boxplot in Figure 5c, we compare the cost distri-
bution of 100 trials for each policy. The whiskers are set as
1.5 ∗ (Q3 − Q1) where Q3 and Q1 are the upper edge and
lower edge of the box separately. As expected, most trials of
unconstrained policies SORB and GRL violate the cost con-
straints, while only a few trials of our method CoSHRL, as
well as a few trials of SAC-lag and WCSAC exceed the cost
limit. It is worth noting that all of the trials of WCSAC-0.1,
which is highly risk-averse, avoid the hazardous area com-
pletely and its cost is much lower than the cost threshold, but
the closer the cost gets to the cost threshold without exceed-
ing the threshold, the shorter the trajectory should be. Thus,
the conservative WCSAC-0.1 make sure that no trajectories
violate the constraints but the worst cases of these trajecto-
ries may be caused by the exploratory policy in the training
stage, and these worst cases do not occur in the testing stage
with the deterministic policy, hence WCSAC-0.1 has worse
rewards in Figure 5b. Our method is not affected by this gap
benefiting from we estimate the cost function in a supervised
manner after the low-level policy is learned.

Additionally, in Figure 6, we provide examples of paths
generated by various approaches within the point maze en-

Table 3: Hyper-parameters used in Safe ViZDoom tasks

Hyper-parameters Values
Policy optimization
Image encoder ResNet16
QNetwork learning rate 0.00025
Collect steps per optimization 2
Replay buffer size 2000
Batch size 64
Soft update rate 0.005
Target update frequency 500
discount factor 1
Exploration strategy Epsilon (ϵ = 0.2)
Cost estimation
Collect steps per optimization 10
Replay buffer size 100000
Batch size 256
Critic learning rate 0.0003
Planning
η 2
rRRT∗ 5

vironment mentioned in the main paper.

C Asymptotic Optimality of CoSHRL
The upper-level planning agent is derived from Informed
RRT* which is asymptotically optimal (Gammell, Srini-
vasa, and Barfoot 2014), i.e., more samples and iterations N
would result in discovery of the shortest path. To show that
our method inherits this property, we evaluate our method
with different numbers of iterations at difficulty level α =
0.5 in Figure 7. We observe the gap between our method
and goal-conditioned RL becomes smaller as the number of
iterations (N in Algorithm 1) increases. Due to the low suc-
cess rate of goal-conditioned RL at high difficulty levels, we
don’t show the comparison at higher difficulty levels. Based
on these observations, our method is asymptotically optimal
with a high success rate in the long-horizon task.

D Training of Distributional RL
Recall that is standard RL updation the Q-value function
with scale factor γ = 1 given action a ∈ A in state s that
leads to a state s′:

Q(s, a) = r(s, a) + max
a′∈A

Q(s′, a′) (5)

Then we minimize the difference between cur-
rent Qθ(s, a) = Q(s, a) and the target Qt(s, a) =
r(s, a) + maxa′∈A Q(s′, a′).

As we care about cost distribution (due to cost constraint
in Eq. (2)) , we need to estimate the distribution of Vπ

c for
the π that maximizes expected V π(s, s′) for nearby s, s′.
While it would suffice to use a standard RL method to max-
imize expected V π(s, s′), it is known from literature that
learning the distribution of Vπ and then calculating expected
value leads to better estimates (Eysenbach, Salakhutdinov,
and Levine 2019). Thus, we use distributional RL for both



Figure 5(a): The simple point navigation envi-
ronment

Figure 5(b): Negated reward for SAC-lag,
WCSAC, GRL, SORB and our method over
100 trials in evaluation.

Figure 5(c): Boxplot of cost in evaluation af-
ter training. The dashed line indicates the cost
limit d.

Figure 6: Typical trajectories for static cost in the com-
plex environment. (a)-(c) are generated by GRL, SORB, and
CoSHRL with cost limit K=4, (d)-(f) with K=7, and (g)-
(i) with K=10. GRL gets stuck in corners and SORB goes
directly through hazards without considering cost. CoSHRL
completely avoids the hazard for K = 1 and goes deeper
into hazard for a better solution with higher K.

reward and cost distribution estimation. Distributional RL
learns a policy π̂ and in the process maintains a network that
represents the distribution of Q which we describe next; af-
ter that we show how to derive V,Vc from the learned pol-
icy π̂.
Distributional value functions: We use distributional
RL (Bellemare, Dabney, and Munos 2017) to estimate the
distribution of the goal conditoned reward random variable
Q (Eysenbach, Salakhutdinov, and Levine 2019). In distri-
butional RL, the possible value estimates are assumed to be
one of N discrete values. In goal reaching tasks the rewards
are non-positive (only 0,-1 in the code, but we write below
for general negative reward) The distribution of Q is repre-
sented by Qθ (neural network parameterized by θ), which

Figure 7: The performance of our method with a varying
number (N ) of iterations.

takes as input s, sg, a and outputs a vector [p1, . . . , pN ]
where pi is the probability of expected reward value taking
the ith discrete value, with p1 corresponding to first bin of
0 value. We write −r(s, a) = i to mean that the immediate
reward takes the ith discrete positive value. We also abuse
notation in the distributional RL setting to use Q(·, ·, ·) to
represent a vector of probabilities instead of a scalar num-
ber.

Using distributional RL in goal-reaching tasks, the current
Qθ(s, sg, a) = [p1, . . . , pN ], a target Qt is defined as

Qt(s, sg, a) =

{
[1, 0, ..., 0] for s = sg
[f([p′1, . . . , p

′
N ], i) for s ̸= sg ∧ −r(s, sg, a) = i

(6)
[p′1, . . . , p

′
N ] is probability vector of the next state s′ and ac-

tion a∗ ∈ argmaxa′∈A E(Qθ(s′, sg, a
′)), which is the opti-

mal Bellman update in distributional RL. In the above func-
tion, f denotes right shift of probability distribution based
on the reward with accumulation in the rightmost bin. More
formally, f([p1, . . . , pN ], 1) = [0, p1, . . . , pN−1, pN−1 +
pN ] denotes right shift when reward is 1 and recursively
f([p1, . . . , pN ], i) = f(f([p1, . . . , pN ], i − 1), 1). Adding
a positive number to a distribution is same as shifting the
distribution by that number, but due to finite representa-
tion, we accumulate the probability in the last bin (see Fig-
ure 8); this accumulation and the rounding of r to discrete
values form the two sources of representation error in dis-
tributional RL (Bellemare, Dabney, and Munos 2017; Ey-



Figure 8: An illustration of updating the distributional Q
value with N = 7 and r(s, a) = −2.

senbach, Salakhutdinov, and Levine 2019). Then we update
Qθ by minimizing the KL-divergence between the target
and current distribution minθ DKL(Q

t||Qθ). The above ap-
proach yields a trained policy π̂. For training, we choose
nearby start and goal states at random throughout the state
space, ensuring that the estimates generalize to any pair of
nearby start and goal in the whole state space.

Next, we represent the distribution of value Vπ̂ as a neural
network V w, which again outputs a probability vector. For
simplicity, we do not include the learned policy, π̂ (which
will not change) in the notation for value neural network,
V w. The fixed learned policy π̂ allows us to estimate V w

directly by minimizing the KL divergence between a tar-
get V t(s, sg) = Qθ(s, sg, a), a ∼ π̂(·|s, sg) and the current
V w (Schaul et al. 2015): minω DKL(V

t||V w). We optimize
the above by storing experiences sampled according to π̂ in
a replay buffer and sampling mini-batches to minimize the
loss above, analogous to supervised learning. Once the vec-
tor of probabilities V w is obtained, we can obtain expected
V by calculating the expectation.

For costs, we note that we performed the reward esti-
mation without considering costs since in our approach the
lower-level agent does not enforce constraints. However, the
lower level agent does estimate the local costs and learn the
cost distribution V c

π . Again, similar to above learning of V w,
the fixed learned policy π̂ allows us to estimate the vector of
probability V w

c function directly by minimizing the KL di-
vergence between the target V t

c (s, sg) = Qθ
c(s, sg, a), a ∼

π̂(·|s, sg) and the current V w
c , that is, minω DKL(V

t
c ||V w

c ).
where Qθ

c(s, sg, a) is estimated by another neural net-
work different from the one used in estimating the dis-
tribution of Q (for simplicity, we both use θ to represent
neural network’s parameter). We learn Qθ

c(s, sg, a) simi-
lar to the learning of Qθ(s, sg, a) by minimizing the KL-
divergence between the target and current cost distribution
minθ DKL(Q

t
c||Qθ

c) but this is after the policy π̂ has been
learned. Thus, this is learned using a policy evaluation Bell-
man update only rather than optimal control Bellman update.

Qt
c(s, sg, a) =

{
[1, 0, ..., 0] for s = sg
[f([p′1, . . . , p

′
N ], i) for s′ ̸= sg ∧ c(s, sg, a) = i

(7)

Figure 9: Comparision bewteen SORB and PALMER. Dis-
tributional RL makes the value estimation more accurate so
that SORB+distibutional RL has higher success rate and out-
perform all the other baselines.

with [p′1, . . . , p
′
N ] = Qθ

c(s
′, sg, a

′) where a′ ∼ π̂(s′, sg)

E SORB v.s. PALMER

Distributional reinforcement learning (RL) plays a crucial
role in the performance of SORB (Eysenbach, Salakhutdi-
nov, and Levine 2019, Section 3.1). PALMER implemented
the SORB baseline in that paper with standard RL, not the
distributional version. In fact, the authors of PALMER do
acknowledge this, and quoting them:

Beker, Mohammadi, and Zamir (2022, Page 8 in sup-
plementary material): The main differences of our
SoRB implementation are: i) we use an ensemble of
Q-functions, but they are trained with DDQN rather
than distributional RL, ii) we train the Q-function
on offline random-walk data, rather than an online
episodic training setup with resets and a reward or-
acle as employed in the original paper. We acknowl-
edge and emphasize that for SoRB, these differences
are the most likely reason for the lower performance
level we observed in our evaluations compared to the
original paper, as they inevitably reduce the accuracy
of Q-values.

In order to compare the distributional RL version of
SORB and PALMER, we use the original version of SORB
with distribution RL (Eysenbach, Salakhutdinov, and Levine
2019, Section 3.1) and use it on the same exact setting used
to produce Figure 4 in the PALMER work (Beker, Moham-
madi, and Zamir 2022, Figure 4). Following their approach,
in Figure 9, the local policy refers to the policy without high-
level planning, whereas the global policy incorporates the
high-level planning algorithm. It can be seen that distri-
butional RL significantly enhances the success rate so
that SORB outperforms all the other baselines used in
PALMER, including PALMER itself, in both the local
and global policies. As discussed above, this improvement
stems from the more accurate distance estimation provided
by the distributional RL approach. We do wish to highlight
that we directly used the reported number for PALMER
and SPTM from the PALMER paper itself in Figure 9,
PALMER and SPTM were not implemented by us as the
provided code is missing a pre-trained model.



F Proofs
Proof of Lemma 1
Proof. For ease of notation, we use V instead of−V . By the
lemma assumption, V gives the shortest length of the path
with obstacles (in a path search problem with deterministic
movement). We need to show the three properties of a dis-
tance metric:
• V (s, s) = 0: this is true as the shortest path between

same point is 0.
• V (s, s′) = V (s′, s): this is true as the shortest path is

direction independent in the state space S ⊂ Rd.
• V (s, s′) ≤ V (s, t) + V (t, s′): this is true because other-

wise if V (s, s′) > V (s, t)+V (t, s′) then the path from s
to s′ via t has shorter length than one given by V (s, s′),
which contradicts the assumption that V gives the length
of shortest path.

Proof of Theorem 1
This proof relies heavily on the proof of asymptotic opti-
mality of RRT* in (Karaman and Frazzoli 2011). We ask
the reader to first revisit that proof, as the proof spans many
pages. In particular, Algorithm 6 (RRT*), Section 4.2 (in-
troduces asymptotic optimality), Lemma 50, Definition 51,
and Appendix G (proof of asymptotic optimality of RRT*).
A background on Poisson point process is also present in the
paper and is needed to understand the proof in Appendix G
of (Karaman and Frazzoli 2011). As the proof in (Karaman
and Frazzoli 2011) is very long and complicated, we next
provide an overview of the proof in order to guide a reader
through the proof in (Karaman and Frazzoli 2011).

1. By Lemma 50, the authors show that always there ex-
ists such a sequence of paths σn with δn > 0 clearance
converging to the optimal path σ∗ (optimal path may
not have non-zero δ clearance), where δn is defined as
min(δ, 4rn) in Appendix G.2 (rn = γRRT∗(

logn
n )1/d is

the rewiring radius).

2. A marked point process is defined in Appendix G.1. Let
{X1, X2, ..., Xn} be a independent uniformly distributed
points drawn from Sfree and let {Y1, Y2, ..., Yn} be in-
dependent uniform random variables with support [0, 1].
Each point Xi is associated with a mark Yi that describes
the order of Xi in the process. More precisely, a point
Xi is assumed to be drawn after another point Xi′ 0 if
Yi′ < Yi. Later on, this marked point process is analyzed.

3. The equivalence of the marked point process to the RRT*
Algorithm is also shown in Appendix G.1. Put an edge
(Xi′ , Xi) whenever Yi′ ≤ Yi and ||Xi′ − Xi|| ≤ rn to
get graph Gn. (rn = γRRT∗(

logn
n )1/d is the rewiring ra-

dius). Edges are removed from Gn to form G′
n by keep-

ing only those edges from parent nodes that come the
parent with shortest path from source. Thus, the distance
of the shortest path in G′

n will be the same as any shortest
paths in Gn. It is shown that G′

n is the same graph that
RRT* would return after n samples.

4. Next, a sequence of balls Bn,1, . . . , Bn,Mn covering the
path σn is chosen in Appendix G.2 of Karaman and Fraz-
zoli (2011) (the ball covering is defined in Definition 51).
Each ball is of radius rn, situated 2rn apart.

5. It is shown that marked point process results in some
number of points in each of the balls such that there ex-
ists an edge between two such points in consecutive balls
with probability one as n→∞ (in Lemma 71).

6. Finally, in Appendix G.4, in Lemma 72 it shown that the
closest path σ′

n (in the BV norm) produced by RRT* to
σn converges to σ∗, i.e., limn→∞ σ′

n = σ∗ and hence by
robustness assumption limn→∞ Rσn′ = Rσ∗ .

Assumption: Finally, we impose one more mild restric-
tion. If for a given path σn with cost K covered by balls
Bn,1, . . . , Bn,M the radius of balls are less than a constant
threshold τ (very small number), then the cost of any path
constructed by joining points within consecutive balls is less
that K + f(τ) where f is a continuous strictly monotonic
function of τ and f(0) = 0.

Proof. In this proof, we will modify certain aspects of the
prior RRT* proof. Thus, the reader must read the proof
in Karaman and Frazzoli (2011) (for which we have pro-
vided a summary and guidance above). Like the proof
in Karaman and Frazzoli (2011), we start by denoting the
optimal path as σ∗ but in our constrained case we addition-
ally impose that the cost of this path Cσ∗ ≤ K−ϵ, where ϵ is
any small number. The cost for any path output by our algo-
rithm (for any n) is always less than K due to the Valid edge
check, but we need to make sure that this constraint does not
prevent the convergence in the reward to the optimal reward
within constraints. This is what we show next. We run Con-
strainedRRT* with cost threshold K and show asymptotic
optimality with constraint K in the limit.

First, borrowing from the proof in Appendix G of (Kara-
man and Frazzoli 2011), we use the same marked process in
Appendix G.1 where the criteria for connecting two sam-
pled points to make an edge (Xi′ , Xi) is Yi′ ≤ Yi and
||Xi′ − Xi|| ≤ rn to get graph Gn (restated in point (3)
in our summary of the same proof). By construction Gn is a
directed graph with no cycles.

After Gn is constructed we impose our criteria that the
shortest path to Xi must incur a cost ≤ K. Remove all such
nodes that do not satisfy this criteria to get graph Gm

n . This
modified construction ensures that the graph Gm

n has no path
greater than cost threshold K.

After this, perform the edge removal as stated in the proof
in Karaman and Frazzoli (2011) (restated in point (3) in our
summary of the same proof) to get G′

n from Gm
n . Thus, the

distance of the shortest path in G′
n will be the same as any

shortest paths in Gm
n . Let Y m

n denote the reward of the best
path in Gm

n and Y ′
n denote the reward of the best path in G′

n,
we have lim supn→∞ Y m

n = lim supn→∞ Y ′
n. Also, let Zm

n
denote the cost of the best path in Gm

n and Z ′
n denote the

cost of the best path in G′
n. By construction, Zm

n ≤ K and
Z ′
n ≤ K.
Hence G′

n is equivalent to the graph produced by Con-
strainedRRT* with cost threshold K.



Next, we redefine δn as follows

δn = min(δ, 4rn, η, τ)

This δn is the strong clearance of path σn, where with
n → ∞ σn converges to σ∗ (the existence is guaran-
teed by Lemma 50 in (Karaman and Frazzoli 2011)). As
limn→∞ rn = 0, there exists a n0 such that for all n ≥ n0

we have δn = 4rn since δ, η, τ are constants. This ensures
that the balls Bn,1, . . . , Bn,Mn that cover the paths σn (for
n ≥ n0) are all obstacle free (as σn has δn clearance and
the radius of the balls are chosen as rn = δn/4). As the
balls are obstacle free, even in our distance metric with ob-
stacles (Lemma 1) these are exactly the same as balls in the
Euclidean norm. Further, as the cost of σn path (for some
large enough n) is ≤ Kϵ/2 for any choice of ϵ (by our ex-
tended definition of δ clearance, since δ∗ has cost of K − ϵ)
including the ϵ we chose at the start and the balls are radius
≤ τ , any path by joining two points in consecutive balls will
be of cost ≤ K − ϵ/2 + f(τ). Taking τ small enough, for
any ϵ this will be ≤ K − ϵ/4, that is, any path via points in
consecutive balls has cost bounded by K − ϵ/4.

Next, Lemma 71 in Appendix G.3 is shown for graph
Gn in Karaman and Frazzoli (2011). The lemma basically
shows that in the limit of n, there will always be a path
(with probability 1) with consecutive nodes through the balls
Bn,1, . . . , Bn,Mn

. In our case, the same lemma continues to
hold for Gm

n since any path via each consecutive ball costs
less than K − ϵ/4 (as argued above), and hence any such
path will also be present in Gm

n .
Lemma 72 also holds for us as all paths via each consec-

utive ball covering σn costs less than K − ϵ/4 and hence
for Lemma 72 (see Lemma 55 where the same sequence of
balls in used), we do not need to bother about the cost of the
path, and hence Lemma 72 holds for ConstrainedRRT* also.
Thus, Lemma 72 shows that σ′

n (that path in the Constrained
RRT* graph that is closest to σn) has cost less than K− ϵ/4
and converges to σn. Finally, with limn→∞ σ′

n = σ∗ we
get our required result due to the robustness assumption
for reward, i.e., limn→∞ Rσ′

n
= Rσ∗ and for cost, i.e.,

limn→∞ Cσ′
n
= Cσ∗ ≤ K − ϵ/4 for any ϵ. Also, any path

output by our algorithm (for any n) is always less than K
due to the Valid edge check.

Thus, overall, as we have proved the results for any ϵ,
from basic real analysis (Rudin 1987), this implies the re-
sult also holds for σ∗ such that Cσ∗ ≤ K.

G Full Algorithm
We provide a more detailed algorithm and algorithm de-
scription than the main paper. Parts of this section is same as
the main paper, the change is mainly in Algorithm 4 which
is a detailed version of Extend node. These algorithms are
also pseudocode and the code provided has the complete de-
tails.
Algorithm Description: We propose Constrained RRT*
(Algorithm 3), which builds on Informed RRT* to handle the
cost constraint. The pseudocode is provided in Algorithm 3.
We search for the optimal path σ∗ to a planning problem
by incrementally building a tree T in the state space S. The

tree, T consists of a set of nodes, V (⊂ S), and edges E
(⊂ S × S).

Algorithm 3: ConstrainedRRT* (so, sG, V,Vc,K)
1 V ← {so}, E ← ∅ , Ssoln ← ∅, T = (V, E)
2 for iteration = 1 ... N do
3 T = Extend node(so, sG, V,Vc,K, T , Ssoln)

4 return best solution in Ssoln

A candidate state snew is chosen (line 4) to be added
to the tree T by sampling srand (line 2) within an ellipse
with focal points as so and sG and axis lengths as rbest and√
r2best − r2min, where rbest (line 1) is the length of the cur-

rent best solution in Ssoln or infinite if Ssoln is empty . In
case srand is far from the nearest node snearest in T (line 3),
then the Steer function in line 6 chooses a point snew within
the min(rRRT∗, η) distance ball centered at snearest that is
also the closest to srand. This hyper-parameter η accounts
for the fact that our distance estimates are precise only lo-
cally. The rewiring radius, rRRT∗ = γRRT∗(log n/n)

1/d,
where n is the current number of nodes sampled, is de-
scribed in (Karaman and Frazzoli 2011). Then, if the can-
didate edge (snearest, snew) is valid then other nodes (set
Snear in line 5) that are within distance min(rRRT∗, η) of
snew are considered as possible connections to snew. The
node smin (line 8-12) that results in shortest path (highest
reward) is connected to snew in line 14, if the edge is valid.

Here, we take a detour to explain how we determine the
validity of edges. An edge is valid if and only if adding it
does not result in a (partial) path that violates the cost con-
straint. The key insight is that this validity can be determined
by computing the convolution of the distributions associ-
ated with the (partial) path and the current Vc. By provid-
ing the definition of Valid edge (T , s, s′,Vc,K) in Algo-
rithm 2 and doing the Valid edge checks in lines 9, 13 and
16 of the Algorithm 4, we ensure that any path output by
the overall algorithm will satisfy the cost constraints. In the
pseudocode of Valid edge (T , s, s′,Vc,K), Vc represents a
random variable (and so does result). Then, the addition in
line 3 of Valid edge is a convolution operation (recall that
the distribution of a sum X + Y of two random variables
X,Y is found by a convolution (Ross 2014)). An example
planner run is shown in Figure 1.

Coming back to the main Algorithm 4, we explore further
the possible edges to be added to the tree. In particular, in
the loop in lines 17-23 (1) the edge is created only if it is
valid and (2) new edges are created from snew to vertices in
Snear, if the path through snew has lower distance (higher
reward) than the path through the current parent; in this case,
the edge linking the vertex to its current parent is deleted, to
maintain the tree structure. InGoalRegion on line 25 tracks
if we are close to the goal.

Algorithm Complexity
The complexity can be divided into two parts: construction
complexity and query complexity. Normally we only focus
on query complexity. However, the construction complexity



Algorithm 4: Extend node
(so, sG, V,Vc,K, T , Ssoln)

1 rbest ← minσ∈Ssoln
{−Rσ} ∪ {∞}

2 srand ← Sample(so, sG, rbest)
3 snearest ← Nearest(T , srand)
4 snew ← Steer(snearest, srand,min(rRRT∗, η))
5 Snear ← Near(T , snew,min(rRRT∗, η))
6 smin ← snearest
7 rmin ← −R(smin)− V (snearest, snew)
8 for ∀snear ∈ Snear do
9 if Valid edge(T , snear, snew,Vc,K) then

10 rnew ← −R(snear)− V (snear, snew)
11 if rnew < rmin then
12 smin ← snear, rmin ← rnew

13 if Valid edge(T , smin, snew,Vc,K) then
14 V ← V ∪ {snew} , E ← E ∪ {(smin, snew)}
15 for ∀snear ∈ Snear do
16 if Valid edge(T , snew, snear,Vc,K) then
17 rnear ← −R(snear)
18 rnew ← −R(snew)− V (snew, snear)
19 if rnew < rnear then
20 sparent ←Parent(snear)
21 E ← E\{(sparent, snear)}
22 V ← V ∪ {snew}
23 E ← E ∪ {(snew, snear)}

24 if InGoalRegion(snew) then
25 Form σ by tracking parents of snew
26 Ssoln ← Ssoln ∪ {σ}
27 return T

cannot be ignored in SORB’s and our case as the distance
of the edge in calculated by neural networks which is quite
time-consuming. As described by SORB, all edges need to
be calculated and those which satisfy certain condition are
temporarily added into the graph to the graph (Eysenbach,
Salakhutdinov, and Levine 2019). Therefore, the construc-
tion complexity of SORB is O(N2) for N nodes. Because
of the usage of tree structure in RRT*, the construction com-
plexity is O(N logN) (Karaman and Frazzoli 2011). For
the query complexity, our method is only O(N) because
the parent of each node is recorded while constructing the
tree itself. SORB uses Dijkstra’s Algorithm to find the short-
est path after the graph is constructed, therefore they have
O(N logN) querying complexity. In conclusion, SORB and

Algorithm 5: Valid edge (T , s, s′,Vc,K)
1 result← Vc(s, s

′)
2 while s.parent do
3 result← result+Vc(s.parent, s)
4 s← s.parent

5 if CV aRα(result) ≤ K then
6 return True
7 return False

CoSHRL have O(N2) and O(N logN) complexity, respec-
tively.


